Abstract

The result of the recent study revealed that the host kind (Artificial diet, Date and Fig) affect the Susceptibility of different insect stages of Fig moth *Ephestia cautella* (Walk.) and Currant moth *Ephestia calidella* (Gunee) to selected insect growth inhibitors (Diflubenzuron, Lufenuron, Cyromazine) Lufenuron was the most toxic inhibitors against eggs of Fig moth reared on artificial diet and its LC50 value reached 0.0012 while the Cyromazine exhibit a less toxic effect on eggs of the same species reared on Fig and its LC50 value reached 0.0075. The larvae of Fig moth showed a higher sensitivity to insect growth inhibitors in comparison to Currant moth larvae reared on all hosts. The values of LC50 of insect growth inhibitors on pupae of Fig and currant most were varied according to the diet kind and insect species. Diflubenzuron and Cyromazine were more toxic to the adults of Fig moth reared on artificial diet while Cyromazine showed a higher toxic effect to the adults of Currant moth reared on fig.

الخلاصة

أظهرت نتائج الدراسة الحالية أن لنوع العائل الغذائي (البيئة الصناعية، التمر، التين) تأثير فعلي درجة أن استجابة الأدوية المختلفة لحشرة التين نوع البذيل *Ephestia calidella* (Gunee) وعثة الزبيب *Ephestia cautella* (Walk.) Lufenuron (Cyromazine, Lufenuron, Diflubenzuron) النوع الحشرية (البيئة الصناعية) أكثر المتثبات سمية لبيض النوع *E. cautella* (Walk.) فيما كان البذيل Cyromazine أقل المتثبات سمية لبيض النوع نفسه النوع على التين إذ بلغت قيمة الـ 0.0012 LC50 فيما كان الـ 0.0087 LC50 وان يرقات عثة التين كانت أكثر حساسية من يرقات عثة الزبيب في الاستجابة لمبيدات المستعملة في الدراسة وعلى جميع الأوساط الغذائية المستعملة في الدراسة. وأظهرت النتائج أيضاً أن قيمة الـ 50 LC50 لمتثبات النمو الحشرية في عدائي النوعين قد تباينت بسبب اختلاف كل من نوع الوسط الغذائي ونوع

* نشرت ملقي في المؤتمر الأول لعلوم الحياة في كلية التربية جامعة الموصل الفترة 4 - 5 أيلول 2007
تأثير نوع الوسط الغذائي في استجابة الأدوار ...

النمو الحشرة في عذارى النوعين قد تباينت بسبب اختلاف كل من نوع الوسط الغذائي ونوع Cyromazine و Diflubenzuron الحشرة فيما أظهرت الدراسة أيضاً أن مثبطا النمو Cyromazine كان أكثر سمية لبالغات عثة النين المتغذية على البيئة الصناعية فيما كان الـ Diflubenzuron أكثر سمية للحشرات البالغة لعثة الزبيب المتغذية على النين.

المقدمة

تعود حشرة عثة التنين (Walk) (Pyralidae: Lepidoptera) Ephestia cautella (Gune) تهاجم العديد من المواد الغذائية في الحقل والمخزن حيث تسمى أيها أوعاعاً مختلفة من المواد الغذائية المخزونة. ولهذا تطورت المحمولة النمو أمانة النهات المنشأ مشابه من الأرض أو في المخزن، فضلاً عن تغذيتها بعديد من المواد الغذائية المخزونة وتقلح المخلفات، الزبيب، ألبرشة، الحيوانات والبقوليات وغيرها من المواد الغذائية (6 و 4) مما يجعلها آفات وسعى الأنتشار في العالم لذلك سجلت اثاراها في العديد من البلدان ابريطانيا، تركيا، الهند، الولايات المتحدة واليابان وغيرها من الفنان العالم وذلك لتسهيلها العملية على التكيف للمصطلح البيئية (3). وفي العراق بلغت نسبة اصابة المحمولة النمو بالطويل الأول بين 7.58-9.86% من مجموع مصادر النمو المفحصة (2) ونلاحظ الابتكار الاقتصادية الكبيرة لهذه الحشرة وقد تقدمت طرق مختلفة حيث استعملت درجات الحرارة العالية في التأثير على أدوارها المختلفة (7 و 8) كما استعمل اتخاذ الاسترداد العامل التدريج الحيوي مع درجات الحرارة العالية (8) ووسيلة كافية (6) كما استعمل العديد من الاعداد الحيوية كالغليفات والمغلفات لمكافحة الحشرة ضعف من استعمال المسميات المعرضة كالبيكترية، الفايروسات، والفطريات، فيما احتلت المكافحة الكيميائية دوراً مهماً في هذا المجال لتكونها الوسيلة السريعة في السيطرة على الحشرة حيث استخدمت مجموعات كبيرة من المواد الحشرية التابعة لمجمعي الكولور والفسفور العضوية والكابروس مانيلا والباروتروبيديا إلا أن ظهور العديد من السلالات المقاومة للمبيدات قد عطل دور هذه المواد في عمليات المكافحة (10 و 16) فضلاً عن مخاطرها الصحية والبيئية (16) ووجه استعمال غذائات البخدير كروميد المثيل وفوسيفويد الهيدروجين بيليٍّ شائعًا في مكافحة حشرات المخازن، إلا أن سوء استخدامها فضلاً عن بدء ظهور السلالات المقاومة من الحشرات كما هو الحال في ظهور المقاومة لدور البيض في عثة التنين (2). لذا أصبح استعمال مثبطات النمو الحشرية ومشاهد تهرون الانسحاب بدلًا ضروريًا في مكافحة وذلك للكفاح العالمي في مكافحة العديد من الآفات الحشرية واستعمالاتها بتركيز واطقة ودرجة أمانها العالية للبيئة وعدد قدرة الحشرة على تكوين سلالات مقاومة لها وعليه فإن الدراسة الحالية استهدفت دراسة تأثير...
نظام مقادير الملاح والرنا رياض السبع

نوع العائلة الغذائية والنوع الحشري في درجة استجابة الأدوار المختلفة للحشرة لبعض
مثبطات النمو الحشري وذلك لأهميته في برامج إدارة الآفات التي تهدف إلى استخدام المبيدات
بطرق تكاملية وعقالانية مع بقاء طرق المكافحة.

مواد وطرق العمل

نفذت الدراسة في مختبر بحوت الحشرات / قسم وقاية النباتات ، خلال عامي
2000-2001، عند متوسط درجة حرارة 25 ± 3°م ورطوبة نسبة 45 ± 10% حيث
تتم معاملة أدوار حشرتي عثة النين وعثة الزبيب (بيضية ، عرفة ، عرفة بالغة )
المتنوعة على ثلاث بنيات غذائية مختلفة هي [البيئة الصناعية المصدرة من (88 غم- جريش
الحنة + 12 غم كسرتين + 1 غم خمرة جافة ) و النمر والنين ] بمثبطات النمو الحشري
بؤسية إثماة بالماء للحصول على ( Cyromazine ، Lufenuron ، Diflubenzuron) التراكم (0.3 ، 0.8 ، 0.5 ، 1) % ونوقاع ثلاث مكرارات لكل تركيز ضم المكرر الواحد
20 فرد لكل دور من أدوار الحشرة حيث تتم معالجة البيض حديث الوضع بعمر (24-48) ساعة والداخري بعمر يوم واحد باستخدام طريقة الرش الدقيق
وذلك بوضع 12 رطل/بوصة ² (11)، تركت المكرارات عند ظروف المختبر لحين فقس
البيض وخروج الحشرات الصغيرة من الحشرة في مكرارات التجربة الساقطة لتحديد نسب
الموت ، أما بيرقات العمر الأول فتم معاملتها بنفس الطريقة السابقة مع إضافة 5-غ من
البيئة الغذائية لكل مكرر فيما عولمت الحشرات البالغة حديثة الخروج بنفس الطريقة السابقة
بأضافة بيرقات ومن مكررات التجربة الساقطة. 

اًضا ، بعد تجاربها بالتدريب عند درجة حرارة كم لمدة 10 دقائق، تم حساب نسب الموت في
اليرقات والغيرات البالغة بعد مرور 24 ساعة من المعاملة أما معاملة التجربة الساقطة
فعملت بالماء فقط. تم تصحيح نسب الموت حسب معادلة (Abbott)(5) وحدود الثقة والميل باستخدام طريقة (15) لـ LC50
حساب السمية النسبية والفاعلية النسبية للمبيدات حسب (Sun and Johnson)(17) والآتي:

قيمة LC50 لاكثر المبيدات المختبرة كفاءة × 100
السمية النسبية =
قيمة LC50 للمبيد الآخر

قيمة LC50 لاكثر المبيدات المختبرة كفاءة × 100
الفاعلية النسبية =
قيمة LC50 للمبيد الآخر
تأثير نوع الوسط الغذائي في استجابة الأدوار...

حللت النتائج إحصائياً باستخدام التصميم العشوائي الكامل (C.R.D) في تجربة عامة بثلاث عوامل (نوع المبيد ونوع العائل الغذائي والنوع الحشرى)، واستعمل اختبار دككن المتعدد المديات لاختبار الفرق بين المتوسطات عند مستوى احتمال (أ > 0.05) حسب ما جاء فيه (دارد والياس).

النتائج والمناقشة

من الجدول (1) يتبين أن مثبطات النمو الحشرى الثلاثة (Diflubenzuron ، Lufenuron ، Cyromazine) المستعملة في الدراسة أظهرت تأثيراً مبايناً في دور البيضة، وان هذا التأثير اختلف باختلاف نوع المبيد والعائل الغذائي ونوع الحشرة حيث يلاحظ أن أكثر المبيدات سمية لبيض حشرة عائلة E. cautella (Walk) المتغذية على البيضة الصفصاعية حيث بلغت قيمة التركز النصفي القاتل LC50 للنوع Cyromazine (0.0012) فيما كان لـ Lufenuron 0.0078 وينعكس هذا في اختلاف قيم التركز النصفي القاتل LC50 للنوع E. cautella (Walk) عند عائلة E. cautella (Walk) حيث بلغت قيمة التركز النصفي القاتل LC50 0.0078 (Walk) ويراقة في النمو الحشرى المستعملة في الدراسة لبيض كل من حشرتين عائلتين E. calidella (Gunea) و E. cautella (Walk) قد تراوح بين 0.0012 (Walk) و0.0078 (Walk) بمتوسط قدره (47.04) فيما ذكر (Charmillot et al) فين تأثير نوع من مثبطات النمو الحشرى ضد بيض دودة تمار الفراخ.

أنواع من مثبطات النمو الحشرى ضد بيض دودة تمار الفراخ

ان قيم التركز النصفيه Diflubenzuron و Hexaflumuron ، Teflubenzuron و Cydia pomonella (L. ) هي لبيضة للبيض بلغت 0.6 ، 0.15 جزء بالمليون على التوالي ، يؤثر على النمو الحشرى في نوعية مثبطات النمو الحشرى في اختلافات في نوعية حشرة عائلة عائلة E. cautella (Walk) أيضاً أن بيض حشرة عائلة عائلة E. cautella (Walk) كان أكثر استجابة لمثبطات النمو الحشرى المستخدمة في الدراسة مقارنة مع بيض E. calidella (Gunea) و E. cautella (Walk) أكثر استجابة لمثبطات النمو الحشرى المستمعة في الدراسة E. calidella (Gunea) مقارنة مع بيض E. cautella (Walk).

الغذائي تأثير في درجة استجابة الدور الحشرى لمثبطات النمو الحشرى، وقائمة السمية النسبية لمثبطات النمو الحشرى المستعملة في الدراسة يوضح وجود تباين في هذه المتواجد النوع المبيد والعائل الغذائي ونوع الحشرة إذ أظهرت نتائج التحليل الاحصائي واختبار دككن وجود فروق معوية عند مستوى احتمال 5% في قيم السمية النسبية في نوع العائل الغذائي ونوع الحشرة حيث كانت اعلى قيمة للسمية النسبية 100% لـ Lufenuron.
نظام الملاحة و رنا رياض السبع

بathing on the plant's vegetative stage and an equal value of the percentage of the name Cyromazine at 15.38% of the name Cyromazine in the larval stage of the name E. cautella (Walk.) in the evidence Cyromazine in the name E. cautella (Walk.) on the plant.

<table>
<thead>
<tr>
<th>نوع العائلة</th>
<th>سميف</th>
<th>المعدل تدفق المحدد</th>
<th>قيمة LC50</th>
<th>مزج العائلة</th>
<th>سميف</th>
<th>المعدل تدفق المحدد</th>
<th>قيمة LC50</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. cautella</td>
<td>50؟</td>
<td>0.002-0.002</td>
<td>2.17</td>
<td>0.0024</td>
<td>E. cautella</td>
<td>210.80</td>
<td>32.43</td>
</tr>
<tr>
<td>E. cautella</td>
<td>650</td>
<td>0.018-0.008</td>
<td>2.64</td>
<td>0.0012</td>
<td>E. calidella</td>
<td>150</td>
<td>36.36</td>
</tr>
<tr>
<td>E. calidella</td>
<td>169.57</td>
<td>0.009-0.002</td>
<td>1.77</td>
<td>0.0046</td>
<td>E. calidella</td>
<td>236.36</td>
<td>36.36</td>
</tr>
<tr>
<td>E. calidella</td>
<td>173.30</td>
<td>0.004-0.004</td>
<td>2.41</td>
<td>0.0045</td>
<td>E. calidella</td>
<td>144.40</td>
<td>22.22</td>
</tr>
<tr>
<td>E. calidella</td>
<td>150</td>
<td>0.009-0.002</td>
<td>1.82</td>
<td>0.0052</td>
<td>E. calidella</td>
<td>173.30</td>
<td>26.67</td>
</tr>
<tr>
<td>E. calidella</td>
<td>144.40</td>
<td>0.008-0.003</td>
<td>2.02</td>
<td>0.0054</td>
<td>E. calidella</td>
<td>190.24</td>
<td>29.27</td>
</tr>
<tr>
<td>E. calidella</td>
<td>125.81</td>
<td>0.011-0.003</td>
<td>2.85</td>
<td>0.0062</td>
<td>E. calidella</td>
<td>173.30</td>
<td>26.67</td>
</tr>
<tr>
<td>E. calidella</td>
<td>150</td>
<td>0.006-0.004</td>
<td>1.90</td>
<td>0.0052</td>
<td>E. calidella</td>
<td>114.71</td>
<td>17.65</td>
</tr>
<tr>
<td>E. calidella</td>
<td>178.70</td>
<td>0.004-0.004</td>
<td>2.25</td>
<td>0.0042</td>
<td>E. calidella</td>
<td>144.40</td>
<td>22.22</td>
</tr>
<tr>
<td>E. calidella</td>
<td>162.50</td>
<td>0.008-0.002</td>
<td>1.84</td>
<td>0.0048</td>
<td>E. calidella</td>
<td>100</td>
<td>15.38</td>
</tr>
<tr>
<td>E. calidella</td>
<td>139.26</td>
<td>0.009-0.003</td>
<td>1.95</td>
<td>0.0056</td>
<td>E. calidella</td>
<td>214.42</td>
<td>21.42</td>
</tr>
</tbody>
</table>

* المتوسطات ذات الاحرف غير المشابهة عمودياً تشير إلى وجود فروقات معنوية عند مستوى احتمال 5%.

(1) تأثير الوسط الغذائي وتوزيع الحشرة في السمية النسبية والفاعلية النسبية لبعض مثبطات النمو الحشرية في دور البيضة لعنة التنين وعئة التنين.

Diflubenzuron
Lufenuron
Cyromazine
Diflubenzuron
Lufenuron
Cyromazine
Diflubenzuron
Lufenuron
Cyromazine
Diflubenzuron
Lufenuron
Cyromazine
تأثر نوع الوسط الغذائي في استجابة الأدوار...

اما بالنسبة لتأثير نوع العائل الغذائي والنوع الحشرفي في استجابة برقات عثة التنين وعثة الزيبب لبعض مثبطات النمو الحشري في توضح من الجدول (2) ان برقات عثة التنين E. calidella (Gunee) كانت أكثر حساسية من برقات عثة الزيبب cautella (Walk.) في استجابتها لمثبطات النمو الحشري المستعملة في الدراسة فقد تراوحت قيمة LC50 لبرقات النوع الأول بين (0.0029-0.0045) بمتوسط قدره (0.0037) فيما تراوحت فيها قيمة LC50 لبرقات النوع الثاني بين (0.0045-0.0058) بمتوسط قدره (0.0046) وعلى جميع الأساليب الغذائية المستعملة في الدراسة عدا حالة واحدة تسارت فيها قيمة ال LC50 فيبلغت (45.004) بالنسبة لمبيد ال Cyromazine و Diflubenzuron و Hexaflumuron ، Teflubenzuron الانتاج بلغت 104 ، 208 ، 204 جزء بالمليون على التوالي ومن ملاحظة قيم خط السمية جدول (2) يبين ان استجابة برقات عثة التنين وعثة الزيبب لمثبط النمو هو أكثر تجانسًا وعلى جميع العوائل الغذائية وذلك لارتفاع قيم ميلس Cyromazine و Diflubenzuron فيهما اظهرت البرقات الاستجابة ذاتها تبعا لنويع العائل الغذائي والنوع الحشري لمثبط النمو لمبيد ال Cyromazine الاصطناعي واختبار ذلك وجود فروقات معنوية عند مستوى atleast 5% في قيم السمية الفاعية بالنسبة لمبيد ال Cyromazine حيث كانت اعلى قيمة للسمية بالنسبة لمبيد ال Lufenuron ضد برقات عثة القش ارتفاع من 80% لابلها لمبيد ال Cyromazine المتغذية على البذور الصناعية وقد بلغت 50% وكانت هناك أيضا فروقات معنوية في قيم الفاعية بالنسبة للمبيدات بحسب نوع العائل الغذائي ونوع الحشرة حيث كانت اعلى قيمة للفاعية بالنسبة 200% لمبيد ال Cyromazine الذي كان أكثر المثبطات Cyromazine سمية ضد برقات عثة الزيبب.
جدول (2) تأثير نوع الوسط الغذائي ونوع الحشرة في السمية النسبية والفاعلية النسبية لبعض
mithطات النمو الحشرية في دور البرقية لعثة التنين وعثة الزبيب.

<table>
<thead>
<tr>
<th>نوع العائل الغذائي</th>
<th>نوع المبيد</th>
<th>السمية النسبية %</th>
<th>حدد الثقة Adi-أعلى</th>
<th>قيمة الميل</th>
<th>قيمة LC50</th>
<th>السمية النسبية %</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. cautella</td>
<td>Diatubenzuron</td>
<td>128.89</td>
<td>0.009 - 0.002</td>
<td>1.85</td>
<td>0.0045</td>
<td>64.44</td>
</tr>
<tr>
<td>E. cautella</td>
<td>Lufenuron</td>
<td>118.37</td>
<td>0.007 - 0.002</td>
<td>1.89</td>
<td>0.0049</td>
<td>59.81</td>
</tr>
<tr>
<td>E. cautella</td>
<td>Cyromazine</td>
<td>134.88</td>
<td>0.005 - 0.003</td>
<td>2.05</td>
<td>0.0043</td>
<td>67.44</td>
</tr>
<tr>
<td>E. cautella</td>
<td>Diatubenzuron</td>
<td>138.09</td>
<td>0.008 - 0.004</td>
<td>2.11</td>
<td>0.0058</td>
<td>50</td>
</tr>
<tr>
<td>E. cautella</td>
<td>Lufenuron</td>
<td>128.89</td>
<td>0.006 - 0.002</td>
<td>1.93</td>
<td>0.0045</td>
<td>64.44</td>
</tr>
<tr>
<td>E. cautella</td>
<td>Cyromazine</td>
<td>138.09</td>
<td>0.005 - 0.002</td>
<td>2.09</td>
<td>0.0042</td>
<td>69.05</td>
</tr>
<tr>
<td>E. ca/idella</td>
<td>Diatubenzuron</td>
<td>193.33</td>
<td>0.005 - 0.001</td>
<td>2.89</td>
<td>0.0030</td>
<td>96.67</td>
</tr>
<tr>
<td>E. ca/idella</td>
<td>Lufenuron</td>
<td>141.46</td>
<td>0.004 - 0.003</td>
<td>2.10</td>
<td>0.0041</td>
<td>70.73</td>
</tr>
<tr>
<td>E. ca/idella</td>
<td>Cyromazine</td>
<td>165.71</td>
<td>0.005 - 0.002</td>
<td>2.57</td>
<td>0.0035</td>
<td>82.86</td>
</tr>
<tr>
<td>E. ca/idella</td>
<td>Diatubenzuron</td>
<td>134.88</td>
<td>0.007 - 0.002</td>
<td>1.83</td>
<td>0.0043</td>
<td>67.44</td>
</tr>
<tr>
<td>E. ca/idella</td>
<td>Lufenuron</td>
<td>120.83</td>
<td>0.004 - 0.002</td>
<td>2.38</td>
<td>0.0029</td>
<td>72.50</td>
</tr>
<tr>
<td>E. ca/idella</td>
<td>Cyromazine</td>
<td>145</td>
<td>0.004 - 0.003</td>
<td>2.10</td>
<td>0.0040</td>
<td>72.50</td>
</tr>
<tr>
<td>E. calideella</td>
<td>Diatubenzuron</td>
<td>161.11</td>
<td>0.005 - 0.002</td>
<td>1.94</td>
<td>0.0036</td>
<td>80.56</td>
</tr>
<tr>
<td>E. calideella</td>
<td>Lufenuron</td>
<td>120.83</td>
<td>0.005 - 0.004</td>
<td>2.20</td>
<td>0.0048</td>
<td>60.46</td>
</tr>
<tr>
<td>E. calideella</td>
<td>Cyromazine</td>
<td>181.25</td>
<td>0.004 - 0.002</td>
<td>2.06</td>
<td>0.0032</td>
<td>90.63</td>
</tr>
<tr>
<td>E. calideella</td>
<td>Diatubenzuron</td>
<td>128.89</td>
<td>0.006 - 0.003</td>
<td>1.98</td>
<td>0.0045</td>
<td>64.44</td>
</tr>
<tr>
<td>E. calideella</td>
<td>Lufenuron</td>
<td>145</td>
<td>0.007 - 0.002</td>
<td>1.83</td>
<td>0.0040</td>
<td>72.50</td>
</tr>
<tr>
<td>E. calideella</td>
<td>Cyromazine</td>
<td>116</td>
<td>0.005 - 0.004</td>
<td>2.24</td>
<td>0.0050</td>
<td>58</td>
</tr>
</tbody>
</table>

المتوسطات ذات الاحرف غير المشابهة عموديا تشير الى وجود فروقات معنوية عند مستوى احتمال 5%.

*
تأثير نوع الوسط الغذائي في استجابة الأدوار...

ومن جدول (4) نلاحظ أن مثبط النمو سمية لبلاغات عَة التنين المنتزعة على البيئة الصناعية مقارنة بالبلاغات عَة الزبيب المتغذية على نفس العائل حيث بلغت قيمة LC50 (0.0036) و (0.0037) لمبيد Cyromazine و Diflubenzuron على التوالي للنوع الأول فيما بلغت هذه القيم في البلاغات النوع الثاني Cyromazine و Diflubenzuron (0.0056) و (0.0054) لمبيد مثبط النمو اليدية.

كما يتضح من نفس الجدول أن مثبط النمو سمية موزعة مع عَة التنين المتغذية على التنين. وب بصورة عامة كانت قيمة LC50 لمثلثات النمو الحشرية متساوية تقريباً تبعاً لنوع العائل الغذائي والنوع الحشرى المستعمل، كما يتضح من الجدول نفسه أن ميل خط السمية هو الأخر قد تكون لمبيد الواحد تبعاً لنوع العائل الغذائي ونوع النمو الحشرية مما يشير إلى تباين استجابة نوعي النمو الحشرية البالغة لamientos النمو الحشرية المختلفة وعلى عَة التنين الغذائية المختلفة. أما بالنسبة لقيم السمية النسبية فظاهرات النتائج في الجدول (4) ان على قيمة السمية النسبية كانت لمثبط النمو البالغة لعَة التنين المتغذية على البيئة الصناعية إذ بلغت 100% واقلها كانت لمثبط النمو في البلاغات البالغة للنوع نفسه المتغذى على التنين و بلغت 56.25%، وكانت هناك فروقاً معروفاً في قيمة الفاعلية النسبية للمبيدات بحسب نوع العائل الغذائي ونوع النمو الحشرية حيث كانت أعلى قيمة للفاعلية النسبية قد بلغت 177.78% لمبيد Diflubenzuron ضد بعليات عَة التنين المتغذية على البيئة الصناعية واقلها 100% لمبيد Cyromazine ضد بعليات النوع نفسه المتغذي على التنين.
### جدول (4) تأثير الوسط الغذائي ونوع الحشرة في السمية النسبية والفاعلية النسبية لبعض مثبطات النمو الحشرية في دور البالغة لعثة التنين وعثة الزبيب.

<table>
<thead>
<tr>
<th>الفاعلية النسبية %</th>
<th>السمية النسبية%</th>
<th>حدد الثقة ادني-اعلى</th>
<th>قيمة الميل</th>
<th>قيمة LC50</th>
<th>نوع الحشرة</th>
<th>نوع العامل الغذائي</th>
</tr>
</thead>
<tbody>
<tr>
<td>177.78</td>
<td>100</td>
<td>0.004 - 0.003</td>
<td>2.35</td>
<td>0.0036</td>
<td>E. cautella</td>
<td>Diflubenzuron</td>
</tr>
<tr>
<td>114.29</td>
<td>64.29</td>
<td>0.008 - 0.003</td>
<td>2.01</td>
<td>0.0056</td>
<td>E. calidella</td>
<td>Lufenuron</td>
</tr>
<tr>
<td>152.38</td>
<td>85.71</td>
<td>0.004 - 0.003</td>
<td>2.17</td>
<td>0.0042</td>
<td>E. cautella</td>
<td>Cyromazine</td>
</tr>
<tr>
<td>136.17</td>
<td>76.59</td>
<td>0.007 - 0.002</td>
<td>1.89</td>
<td>0.0047</td>
<td>E. calidella</td>
<td>Diflubenzuron</td>
</tr>
<tr>
<td>172.97</td>
<td>97.29</td>
<td>0.005 - 0.002</td>
<td>1.95</td>
<td>0.0037</td>
<td>E. cautella</td>
<td>Lufenuron</td>
</tr>
<tr>
<td>118.52</td>
<td>66.67</td>
<td>0.007 - 0.003</td>
<td>2.09</td>
<td>0.0054</td>
<td>E. calidella</td>
<td>Cyromazine</td>
</tr>
<tr>
<td>128</td>
<td>72</td>
<td>0.008 - 0.002</td>
<td>1.85</td>
<td>0.0050</td>
<td>E. cautella</td>
<td>Diflubenzuron</td>
</tr>
<tr>
<td>114.29</td>
<td>64.29</td>
<td>0.012 - 0.002</td>
<td>1.83</td>
<td>0.0056</td>
<td>E. calidella</td>
<td>Lufenuron</td>
</tr>
<tr>
<td>139.13</td>
<td>78.26</td>
<td>0.005 - 0.003</td>
<td>2.60</td>
<td>0.0046</td>
<td>E. cautella</td>
<td>Cyromazine</td>
</tr>
<tr>
<td>142.22</td>
<td>80</td>
<td>0.008 - 0.002</td>
<td>1.79</td>
<td>0.0045</td>
<td>E. calidella</td>
<td>Diflubenzuron</td>
</tr>
<tr>
<td>123.08</td>
<td>69.23</td>
<td>0.010 - 0.002</td>
<td>1.78</td>
<td>0.0052</td>
<td>E. cautella</td>
<td>Lufenuron</td>
</tr>
<tr>
<td>123.08</td>
<td>69.23</td>
<td>0.011 - 0.002</td>
<td>1.73</td>
<td>0.0052</td>
<td>E. calidella</td>
<td>Cyromazine</td>
</tr>
<tr>
<td>123.08</td>
<td>69.23</td>
<td>0.008 - 0.003</td>
<td>1.90</td>
<td>0.0052</td>
<td>E. cautella</td>
<td>Diflubenzuron</td>
</tr>
<tr>
<td>123.08</td>
<td>69.23</td>
<td>0.007 - 0.003</td>
<td>1.20</td>
<td>0.0052</td>
<td>E. calidella</td>
<td>Lufenuron</td>
</tr>
<tr>
<td>136.17</td>
<td>76.59</td>
<td>0.005 - 0.004</td>
<td>2.50</td>
<td>0.0047</td>
<td>E. cautella</td>
<td>Cyromazine</td>
</tr>
<tr>
<td>128</td>
<td>72</td>
<td>0.004 - 0.002</td>
<td>1.89</td>
<td>0.0050</td>
<td>E. calidella</td>
<td>Diflubenzuron</td>
</tr>
<tr>
<td>100</td>
<td>56.25</td>
<td>0.008 - 0.004</td>
<td>2.00</td>
<td>0.0064</td>
<td>E. cautella</td>
<td>Lufenuron</td>
</tr>
<tr>
<td>133.33</td>
<td>75</td>
<td>0.006 - 0.003</td>
<td>2.07</td>
<td>0.0048</td>
<td>E. calidella</td>
<td>Cyromazine</td>
</tr>
</tbody>
</table>

*المتوسطات ذات الابحرف غير المشابهة عمودياً تشير إلى وجود فروقات معنوية عند مستوى احتمال 5%.*
المصادر

3. سعيد، خالد كزار (1977) رساله ماجستير. كلية الزراعة. جامعة بغداد.