Pot experiment was conducted in the wiry house to study the effect of treated soil with boric acid, magnesium sulphate and calcium chloride with concentrations of (0.1%, 0.2%, 0.3%) Kg soil on growth of barley cultivars (402) by its effect on shoot and root systems length their dry weight, chlorophyll, carbohydrate, protein, relative water content of leaves and mineral composition of shoot and root systems. The results show that treating the soil with calcium chloride lead to enhance the plant growth by increasing shoot length and its dry weight, root length, leaves content of protein and carbohydrate and also lead to enhance the mineral composition of shoot and root systems by increasing calcium, magnesium, potassium concentrations as compared with the other treatments. While the results showed that when soil treated with boric acid lead to significant decrease in shoot length and dry weight of shoot, root systems, chlorophyll a, b content of leaves and cell membrane stability and increase in protein concentrations of shoot and root systems by decreasing potassium and magnesium of shoot and root systems as compared with the other treatments.

The results showed that:

- Treating the soil with calcium chloride lead to enhance the plant growth by increasing shoot length and its dry weight, root length, leaves content of protein and carbohydrate and also lead to enhance the mineral composition of shoot and root systems by increasing calcium, magnesium, potassium concentrations as compared with the other treatments.

- Treating the soil with boric acid lead to significant decrease in shoot length and dry weight of shoot, root systems, chlorophyll a, b content of leaves and cell membrane stability and increase in protein concentrations of shoot and root systems by decreasing potassium and magnesium of shoot and root systems as compared with the other treatments.
تأثير بعض المغذيات المعدنية في النمو

أدى إلى حصول انخفاض معنوي بارتفاع المجموعات الخضروية والوزن الجاف للمجموعات الخضرية والجزرية وتركيز الكرزوفيل A,B. وثبات الخصوصة الميكروباتية لخلايا الأوراق النباتية وزيادة تركيز البرولين في الأوراق، كما أدى إلى حصول انخفاض في التركيب المغذي للمجموعات الخضرية والجزرية من خلال الانخفاض بتركيز كل من الكالسيوم في المجموعات الجزيرية وانخفاض بتركيز كل من البوتاسيوم والمغنيسيوم في المجموعات الخضرية والجزرية مقارنة بالمعالجات الأخرى.

المقدمة

يحتاج كل نبات إلى مجموعة من العناصر الغذائية حتى يكمل دورة حياته وعند توفر هذه العناصر بالكفاية لكل نبات وبشكل متوازن فيما بينها يستطيع النبات أن ينمو بشكل جيد ويعطي الإنتاج المطلوب منه عند توفر الظروف الجوية والبيئة المناسبة. وقد يكون عنصرًا من هذه العناصر متوفرًا بالنسبة وبكميات تزيد كثيرًا عن حاجة النبات ولا تستطيع الجذور امتصاص كفايتها منه نظرًا لوجود هذا العنصر بشكل غير صالح للامتصاص (1). عند توفر الظروف الملائمة للنمو يلاحظ أن النباتين ينمو بشكل طبيعي دون تدخل الإنسان ويدخل على غذائه (العناصر الغذائية) من خلال تحلق بقايها النباتات وتقتلك الصخور والمركبات الأخرى في التربة، وعندما ازدادت حاجة الإنسان للغذاء، أخذ يستغل الأرض بشكل كثيف من خلال زراعة محاصيل متتالية ومجيدة مما أدى إلى خفض خصوبة التربة وتنفيج الإنتاج. وبعد أن بدأ إنتاج الأسمدة الكيميائية اتجه المزارع نحو الأسمدة الحديثة ولا تزال تستعمل وبكميات كبيرة بغض النظر عن حاجة النباتات، أو ما يتواجد منها في التربة مما يؤدي ذلك إلى فقد نسبة كبيرة من هذه العناصر دون أن يستفيد منها النبات أو قد تحدث أحيانًا حالات تسمم للنباتات نتيجة تراكم بعض العناصر الغذائية في التربة (2).

لذلك من الضروري معرفة حالة العناصر الغذائية في التربة والإرمان بما يحتاجه النبات
من عناصر غذائية خلفية لدراسة حياة النبات. إن تقدير حاجة النباتات للعناصر الغذائية يعتمد على
طريق التشخيص التي تشتمل أعراض نقص العناصر واختبارات التربة والنباتات، فهذه
المؤشرات أو المتطلبات لها أهميتها في تقدير وقت الحاجة إلى إضافة المغذي وعند معدل
الإضافة الملائم مرتبط بتقلبات المحصول للغذاء وقدرة تجهيز المغذي للعناصر الغذائية في
التربة التي ينمو عليها النبات (2).

ومع العناصر الغذائية التي يحتاجها النبات وبكميات كبيرة كالكالسيوم والمغنيسيوم، حيث
يعتبر الكالسيوم من العناصر المهمة للنبات حيث يدخل في تركيب الصفيحة الوسطى والشي
تتركب كيميائيا من بكتات الكالسيوم وهو هام بتكوني الأغشية الخلوية كم ان له دور في تنظيم الكروماتين على المغزل أثناء الانقسام الميتوزي. أما بالنسبة للمغنيسيوم فيعتبر من العناصر المتحركة في النباتات ولذا نسب تلاحظ بكميات عالية في الأنسجة وهو من مكونات الكورتوفيل وكما أنه يدخل في تشريط العديد من الأنزيمات أثناء الأيض الكاريوهيدراتي وهو منشط للأنزيمات التي تساعد على تشكيل الأحماض النووية. أما البورون فيعتبر عنصر غير متحرك في النباتات، بلعب دور مهم في انتقال الكاريوهيدرات داخل النباتات حيث يكون معقد بوراتي يسهل الانتقال عبر الأغشية كما أنه هام في تكوين ونضج حبوب اللقاح وعمليات التقích (3).

ولكشون الشعير بعد المثقل السريع في العالم من بين المحاصيل (مساحة إنتاج)، وفي العراق فانه يمثل المحصول الحاوي الثاني من حيث أهميته إلا ان يقدم المرتبة الأولى من بين المحاصيل الحقلية (4). فقد جاءت هذه الدراسة بهدف التعرف على تأثير بعض العناصر الغذائية (المعدنية) في النمو وبعض المتغيرات الفسلية لنباتات الشعير.

المواد وطرق البحث

تهيئة التربة: أخذت التربة على عمق (0-30) سم من السطح من أجرى الحقول الحقول الزراعية في (الرشيدية / محافظة النينوى) وجعلت هوانى، ثم نمت ومرت من خلال مخل أقطر فتحاته (2) ملم. اجري تحليل التربة في مختبرات قسم علم الحياة / كلية التربية ومختبرات التربة / كلية الهندسة وذلك لتقدر عدد من الصفات الكيميائية والفيزيائية للتربة. إذ كانت نسبة الرمل(كم/كغم) (200) نسبة الغرين (كم/كم) (640) نسبة الطين (كم/كم) (160)، كما كتب لنسبة التربة كانت (مزيجية طينية غرني) تحتوي على مادة عضوية(%) (12.4) ودرجة توصيل كهربائي (EC) تسنيم م/م (260) ودرجة تفاعل التربة (PH) (6.2) ومادة نتاجية كايتونية (CEC) (4.05) ولما كانت نسب الأيونات ذاتية (CEC) كالثاني: الصوديوم (Na+) (0.050) والبوتاسيوم (K+) (0.014)، المغنيسيوم (Mg) (0.530)، الكالسيوم (Ca) (0.151) التي تم الحصول عليها من مقدمة بحوث زراعة نينوى نسمة بحوث المحاصيل الحقلية (موصل-رشيدية) ونستند المعايير بالتغذية الإضافية ثلاثة تركيز (0.01, 0.2, 0.3)/كغم.

تربة من خازات الريوز وكبيرات المغنيسيوم وكريود الكالسيوم كلا على انغراد.

استخدمت أصص بلاستيكية ذات قطر (23) سم وارتفاع (20) سم مساحة كل أصص
(5) كيلو غرام تربة والتي سبق ان خلطت بمسمى البورون عند تركيز الزيوتين (20) جزء
تأثير بعض المغذيات المعدنية في النمو...

بالمليون / كيلو غرام تربة وسماد سوبر فوسفات عند تركيز (40) جزء بالتاليون / كيلو غرام تربة ، بعد ذلك تم خلط تربة الأصنص بكل من (حمض اليود/ فيكيني ويليمسيوم وكورليكالسيوم) بالتزامن المذكور انا. نزعت البذور في 15/1/2006 وواقعة (15) نذرة / أصيص ووضعت الأصنص بشكل عشوائي تحت ظروف البيت المركلي ، وبعد (10) أيام من الزراعة خفض عدد البذورات إلى ست بذورات في كل أصيص. تم رصد الأصنص بالامة الاعتيادي عند (75%) من السعة الحالية للتربة وضربت كمية الماء المضافة يومياً بواسطة الميزان وبعد مرور (70) يوماً من تاريخ الزراعة قلعت النباتات...

وقائع (3) مكررات للياقة الوعائية.

فصلت المجاميع الخضرية عن المجاميع الجذري ثم وضعها في إكياس ورقة متقدية لغرض الحصول على الوزن الجاف بعد قياس ارتفاع النباتات بعد الاشتاء ومجاورة النباتات والمواد الجذري وتقرير وزن المادة الجافة للمجموع الخضري والمجموع الجذري للنباتات وذلك بعد تجفيف المادة الرطبة في قرن كيرلي بدرجة (75) م ولمدة (48) ساعة وحzell ثبات الوزن. كما تم تقدير تراكيز كل من الكلوروفيل والكلوروفيلات والبروتين وبعض العناصر الغذائية (الصوديوم والبوتاسيوم والكالسيوم والمغنيسيوم و...

Makinnny and Saied_H(5,6) Arnon (7) كما أوردتهما (8) Herbert (488) نانومتر بالطول الموجي (500). استخدمت العلاقات الآتية لحساب كل من كلوروفيل (Spectrophotometer/cam)

\[A = (12.7D663) - 2.69(D645) \times V/(1000 \times W). \]

\[B = (22.9(D645) - 4.68(D663)) \times V/(1000 \times W). \]

\[\text{D} = \text{قراءة الكثافة الضوئية بالكلوروفيل المستخلص على الأطوال الموجية 663 و645 نانومتر على}. \]

\[\text{D} = \text{الوزن النباتي للاسترونت المخفف بتركيز (80)}\% \text{.} \]

\[W = \text{الحمض النهائي للنمطن المخفف بتلك (80)}\% \text{.} \]

تقدير الكاربوبيريراديس: كما قدرت كمية الكاربوبيريراديس في أوراق نبات الشعير تبعاً لطريقة (Spectrophotometer pyeuni /cam). (9) الواباع طريقة فول (9) المحورية عن طريق...

TECHNICAL INFORMATION
تقدير محتوى الماء النسيب في الأنسجة الورقية: تم تقدير محتوى الماء النسيب للورقة الثانية بطريقة Schon-Feld (11) والمتعبة من قبل Turner (12) وحسب المعادلة الآتية:

\[
\text{المحتوى الماء النسيبي (٪)} = \frac{\text{الوزن الالمتالى - الوزن الجاف}}{\text{الوزن الالمتالى}} \times 100
\]

تقدير البرولين في الأنسجة الورقية: قد تركز الحامض الأميني البرولين في الورقة الثانية لنبات الشعير لكل معاملة من المعاملات كما ورد في طريقة (13) باستخدام جهاز المطياف الضوئي عند طول موجي (520) نانومتر.

تقدير درجة ثبات الأغشية الساينوبلازمي ونسبة تضررها:

1. قدرت درجة ثبات الأغشية الساينوبلازمي ونسبة دليل الضرر بحسب طريقة Bandurska (14) كما تم تقدير نسبة دليل الضرر بموجب معادلة (15) وكمبياتي:

\[
I = \left[1 - \frac{1}{T1 / T2} \right] \times 100 \%
\]

تمثل قراءة التوصيل الكهربائي لمعاملة السيطرة قبل وبعد قتل الأنسجة. تتمثل قراءة التوصيل الكهربائي لكل معاملة قبل وبعد قتل الأنسجة على التوالي.

2. تركز الايونات: تم تقدير تركز الايونات الصوديوم والبوتاسيوم لروش المضخة الورقية بجهاز (Corning Flame Photometer).

تقدير بعض الايونات في المجاميع الخضرية والمجاميع الجذرية: اخذت العينات النباتية المجففة من المجاميع الخضرية والمجاميع الجذرية لنبات الشعير وتم طحنها باستخدام ورقة خزفية واحده (0.5) غم من كل عينة وهندس ب metod المطياف اليدوي (16) وقدمت الايونات الكلياتة:

الكالسيوم (Moor’s s’ Method) (Corning Flam Photometer) ورد ووصفها في (17) ، البوتاسيوم (Na+) باستعمال جهاز (18) والكالسيوم (K+) ووهو سيدام (19,20) وتتم المقارنة بين الاختلافات المعنوية في معدلات المعاملات باستخدام اختبار دكنت متعدد المدى (Duncan's New Multiple Range Test).

التلخيص الإحصائى: صمم التجربة وحللت إحصائيا باستخدام التجربة العاملية وفي التجربة Completely Randomized Design (C.R.D) للتصميم العشوائي الكامل في التجربة العاملية (19,20) وتتم المقارنة بين الاختلافات المعنوية في معدلات المعاملات باستخدام اختبار دكنت متعدد المدى (277).
تأثير بعض المغذيات المعدنية في النمو....

النتائج والمناقشة

الصفات المورفولوجية والوزن الجاف للمجتمعات الخضري والجزرية:

يتضح من الجدول (1) أن معاملة النتررب حامض البوريك وكبريتات المغنيسيوم بتركيز
(0.1%) وكلوريد البوتاسيوم بتركيز (0.2%) أدّى الى حصول زيادة معنوية في ارتفاع
المجموع الخضري ويعود السبب في ذلك الى أن معاملة النتررب بتركيزها واطلاقها من البوتاسيوم
أدى الى حصول نمو جيد للمجموع الخضري مقارنة بمعاملة المقارنة (21) وادت معاملة النتررب
بحمض البوريك بتركيز (0.3%) وكلوريد البوتاسيوم بتركيز (0.2%)، الى
حصول زيادة معنوية بطول المجموع الجنري. ان معاملة النتررب بالبورون يعمل على زيادة
في طول المجموع الجنري وذلك من خلال اشراكه في انقسام الخلايا واستطالتها (22).
وأوضح الجدول ان معاملة النتررب بحمض البوريك بتركيز (0.3%,0.2%) وكبريتات
المغنيسيوم بتركيز (0.2%,0.1%) وكلوريد البوتاسيوم بتركيز (0.3%,0.1%)
كلا على انفراد أدّى الى حصول انخفاض معنوي في وزن المجموع الخضري وادي معاملة النتررب
بحمض البوريك وكبريتات المغنيسيوم بتركيز الثلاثة (0.3%,0.2%,0.1%)
إلى حصول انخفاض معنوي بوزن المجموع الجنري مقارنة بمعاملة المقارنة. نظرا لكون البورون من
العناصر غير المتحركة لذلك نلاحظ بأن علامات العجز吮 النقص تظهر في الجذور بشكل
واضح نتيجة لتواجده في النتررب (22)اما بالنسبة لتأثير كبريتات المغنيسيوم نلاحظ بأن
المغنيسيوم يعمل على اعالة امتصاص وتركم البوتاسيوم في النبات وهذا بدوره له تأثير سلبي
كبير على النبات ونموه (23) كما لوحظ بأن الوزن الجاف للمجموع الخضري حصل فيها
زيادة معنوية عند معاملة النتررب بكلوريد البوتاسيوم بتركيز (0.2%) وفي الوزن الجاف
المجموع الجنري عند معاملة النتررب بكلوريد البوتاسيوم بتركيز (0.3%,0.1)
أن الزيادة
الحائلة قد تكون نتيجة لزيادة تجهيز بيئة الجذور بالبوتاسيوم والذي يؤدي الى تصميم نمو
المجموع الجنري والخضري (24).

كما لم يظهر الجدول (1) أي اختلافات معنوية بعدد الأشواط عند معاملة النتررب بجميع
المعاملات مقارنة بمعاملة المقارنة.

وبين الجدول عند مقارنة تأثيرات كل من حامض البوريك وكبريتات المغنيسيوم
وكلوريد البوتاسيوم في ارتفاع المجموع الخضري والجنري والوزن الجاف للمجموع الخضري
عدم وجود اختلافات معنوية بين المعاملات الثلاثة ولكن حصل تفوق معنوي في الوزن
الجاف للمجموع الجنري عند معاملة النتررب بكلوريد البوتاسيوم مقارنة بمعاملة بكبريتات
المغنيسيوم وحمض البوريك وكذلك حصلت زيادة معنوية في عدد الأشواط عند المعاملة.
يتيح التأثير السلبي للكالسيوم على نمو النباتات، حيث أن زيادة في عدد الأشواط ربما تؤدي إلى كون الكالسيوم والبورون من العناصر الضرورية لنمو النباتات أو تدخل في تركيب جذور النباتات (2) كما أنهما ضروريان لتنمو الأغشية البلازمية واستطالة الخلايا والتنمو.

etable 1: تأثيرات إضافة حمض البورون وكريبيتات المغنيسيوم وكالسيوم الكالسيوم على النبات في بعض الصفات المورفولوجية ووزن المادة الحافة للمجامع الخضرية والجزرية للنبات الشعير.

<table>
<thead>
<tr>
<th>الصفات المورفولوجية</th>
<th>كريبيتات المغنيسيوم %</th>
<th>حمض البورون %</th>
<th>مقادير</th>
<th>ملاحظات</th>
</tr>
</thead>
<tbody>
<tr>
<td>ارتفاع الجذور الخضرية (سم)</td>
<td>35c</td>
<td>36e</td>
<td>36c</td>
<td>36c</td>
</tr>
<tr>
<td>طول الجذور الخضرية (سم)</td>
<td>37c</td>
<td>37c</td>
<td>37c</td>
<td>37c</td>
</tr>
<tr>
<td>وزن المادة الحافة للجزري والخضري (المعات)</td>
<td>38c</td>
<td>38c</td>
<td>38c</td>
<td>38c</td>
</tr>
<tr>
<td>وزن المادة الحافة للخضري (المعات)</td>
<td>39c</td>
<td>39c</td>
<td>39c</td>
<td>39c</td>
</tr>
<tr>
<td>عدد الانتصابات</td>
<td>40c</td>
<td>40c</td>
<td>40c</td>
<td>40c</td>
</tr>
</tbody>
</table>

ال معدلات ذات الأثر المتناسبة لا تختلف معًا عند مستوى الاحتمال (5%) بسبب اختبار دفنك متعدد العوامل.

الكالسيوم والكربوهيدرات والبروتينات:

بين الجدول (2) حصول انخفاض معنوي بتكرز كالروفيل A,B عند معاملة النبات بكل من حمض البورون وكريبيتات المغنيسيوم وكالسيوم الكالسيوم والترابيذ (0.1%, 0.1%, 0.1%) كغم تربة مقارنة بمعملة المقارنة وقد يعود ذلك إلى حصول ارتفاع الأورقة عند معاملة النبات بالكالسيوم (25) كما لوحظ بأن البورون في حالة زيادة يؤدي إلى حصول ضرر في الأورقة حيث تظهر بقع داكنة على الأورقة ويعيقها فقدان اللون الأخضر في حفظ الأورقة المميزة (26).

كما لوحظ عدم وجود فروق معنوية بين تأثيرات كل من حمض البورون وكريبيتات المغنيسيوم وكالسيوم في تركيز كالروفيل A,B.

كذلك لوحظ بأن معاملة النبات مما يؤدي إلى حصول ارتفاعات معنوية بتكرز الكاربوهيدرات في الأورقة النباتية للشعر مقارنة بمعاملة المقارنة باستثناء حصول انخفاض معنوي عند معاملة النبات بكميات المغنيسيوم بتكرز (0.3%) وحصول زيادة معنوية عند معاملة النبات بكميات الكالسيوم بتكرز (0.2%) وقد يعود السبب في ذلك إلى دور الكالسيوم في تخفيف الآثار الضارة لبعض العناصر في العمليات الفضلى في النبات (27).
تأثر بعض المغذيات المعدنية في النمو

وظهر حصول انخفاض معنوي بتركيز الكلروفيوزن عند معاملة التربة بكميات المغنيسيوم مقارنة ومعاملة التربة بحماض البوريك وكليود الكالسيوم.

كما يتضح من الجدول (2) حصول زيادة معنوية بتركيز البروتين في المجموع الخضري لنباتات النسمة عند معاملة البوريك وكربونات المغنيسيوم وكليود الكالسيوم وبالتركيز (0.1% 0.2% 0.3%) /كم تربة باستثناء عدم ظهور اختلافات معنوية عند معاملة التربة بكميات الكالسيوم بتركيز (0.3%) مقارنة مع معاملة المقارنة. إن الزيادة بتركيز البروتين في المجموع الخضري لم تأت بالدورة البورون في النهـ بعمل على تثبيت أو الاشتراك في تثبيت النترولوجين وهذا ديرته له تأثير بتركيز البروتين (28) أما الزيادة في تركيز البروتين عند المعاملة بكميات المغنيسيوم فقد يوجد لدور المغنيسيوم في زيادة امتصاص النتروجين والفسفور في النبات عند معاملة التربة التي ينمو فيها بالمغنيسيوم (23) وقد يؤثر هذا أيضاً بدوره على تركيز البروتين في النبات.

وعند مقارنة تأثير كل من حمض البوريك وكربونات المغنيسيوم وكليود الكالسيوم في تركيز البروتين في أوراق نباتات النسمة لوحظ عدم وجود اختلافات معنوية بين المعاملات الثلاثة.

جدول (2) تأثيرات في تركيز الكلروفيوزن والكاربوهيدرات والبروتينات في أنفس الأوراق لنباتات النسمة.

<table>
<thead>
<tr>
<th>المعاملات</th>
<th>كليود الكالسيوم</th>
<th>كربونات المغنيسيوم</th>
<th>حمض البوريك</th>
<th>مقارنة</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>1.44b 0.92a</td>
<td>0.51b 0.44a</td>
<td>0.41a 0.37a</td>
<td>1.59a</td>
</tr>
<tr>
<td>0.2</td>
<td>0.72i 0.89a</td>
<td>0.48c 0.39a</td>
<td>0.49c 0.19h</td>
<td>0.66a</td>
</tr>
<tr>
<td>0.1</td>
<td>0.59j 0.30g</td>
<td>0.34f 0.30g</td>
<td>0.19h 0.37a</td>
<td>1.15ab</td>
</tr>
</tbody>
</table>

الالمحتوي المائي وتركيز البروتين وثبات الأغشية الساينتولامبية نسبة تضررها في أوراق نباتات النسمة.

بين الجدول (3) أن معاملة التربة بحماض البوريك بتركيز (0.1%) وكميات المغنيسيوم بتركيز (0.3%) كلا على انحراف أدى إلى حصول زيادة معنوية في المحتوي المائي لأوراق نباتات النسمة عند المقارنة بإجمالي المحتوى المائي في البروتينات عند معاملة التربة بكميات المغنيسيوم وبالتركيز الثلاثة وكميات الكالسيوم بتركيز 0.1% مقارنة مع معاملة المقارنة وحصول زيادة معنوية بتركيز البروتين عند بقية المعاملات.

المعدلات ذات الأحرف المتشابهة لا تختلف معنويًا عند مستوى الاحتمال (5%) بحسب اختبار تكرار متمد الحدود.

280
وبهذا يتفاوت مع كل من (29) في أن تعرض النباتات للأجهاد يؤدي إلى تغيرات فسيطية وكمية جاذبة منها. تؤثر المحتوى المائي في المجامع الخلقي والذين يؤدي إلى تراكم عدد من المركبات الأزمنية كالكربونات والبروتين والكلاسيكيين بينما تغيرات في بناء البروتين. أما ما يظهر اختلافات معنوية بمعنى الماء النسيبي عند معاملة النبات بحامض البوريك وكثيريات المغنيسيوم وكالوريد الكالسيوم عند العرسان المقارنة فيما بينهما فهي حين حصول تفوق معنوي بتركيز البروتين عند معاملة النبات بحامض البوريك على المعاملين الآخرين.

كما بين جدول (3) إلى حصول زيادة معنوية في دليل الضرر عند معاملة النبات جميع المعالات المذكورة علاوة مقارنة بمعاملة الماء وقد يعود السبب إلى تأثير البورون حيث يعمل على احداث اضرار في الغشاء البلارمي وهذا يؤدي إلى فقدان السيطرة الميكانيكية وهذا ما قد يمكن من ارتشاح الصوديوم حيث بلغت الحدود المعنوية عند معاملة النبات بحامض البوريك بتكرار (7/3)٪ وذلك الحال بارتشاح البوراتوم بنفس التركيز. غير أن معاملة النبات بكراتد الكالسيوم أدت إلى حصول انخفاض معنوي في ارتشاح البوراتوم مقارنة بمعاملة الكالسيوم لما قد ينسب إلى دور الكالسيوم في الحفاظ على تركيب وسلمية ووظائف الأغشية الخلوية (30).

كما أوضح الجدول (3) حصول تفوق معنوي بدليل الضرر وبارتشاح الصوديوم عند معاملة النبات بحمض البوريك مقارنة بمعاملة النبات بكراتد المغنيسيوم وكالوريد الكالسيوم في حين حصل تفوق معنوي بارتشاح البوراتوم عند معاملة النبات بكراتد المغنيسيوم مقارنة بكاروريد الكالسيوم. جدول (3) تأثيرات في محتوى الماء النسيبي وارتشاح انواع الصوديوم والبوتاسيوم والبروتين للاستجابة لؤراق نتائج الشعير.

<table>
<thead>
<tr>
<th>جدول كوارض (3) كوارض مغنيسيوم</th>
<th>كوارض البروتين</th>
<th>مقارنة معنوية</th>
<th>مقارنة معنوية</th>
<th>مقارنة معنوية</th>
</tr>
</thead>
<tbody>
<tr>
<td>كوارض الكالسيوم (0.3)</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>79d</td>
<td>81cd</td>
<td>88b</td>
<td>95a</td>
<td>90b</td>
</tr>
<tr>
<td>81</td>
<td>87a</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>0.89c</td>
<td>1.08e</td>
<td>0.61j</td>
<td>0.79g</td>
<td>0.66b</td>
</tr>
<tr>
<td>0.86c</td>
<td>0.79b</td>
<td>0.70b</td>
<td>0.82a</td>
<td>0.82b</td>
</tr>
<tr>
<td>4.32d</td>
<td>2.78e</td>
<td>3.15f</td>
<td>5.11b</td>
<td>3.14f</td>
</tr>
<tr>
<td>3.42b</td>
<td>2.78h</td>
<td>3.15f</td>
<td>5.11b</td>
<td>3.14f</td>
</tr>
<tr>
<td>0.42cd</td>
<td>0.41d</td>
<td>0.53b</td>
<td>0.47 cd</td>
<td>0.42cd</td>
</tr>
<tr>
<td>0.46b</td>
<td>0.47b</td>
<td>0.46b</td>
<td>0.47b</td>
<td>0.46b</td>
</tr>
<tr>
<td>0.28de</td>
<td>0.27de</td>
<td>0.22f</td>
<td>0.46c</td>
<td>0.21f</td>
</tr>
<tr>
<td>0.26b</td>
<td>0.38a</td>
<td>0.36ab</td>
<td>0.26b</td>
<td>0.38a</td>
</tr>
</tbody>
</table>

المعدلات ذات الأحرف المشابهة لا تختلف معنويًا عند مستوى الاحتمال (5%) بحسب اختبار دنكن متوعد الحدود.
لا يوجد نص يمكن قراءته بشكل طبيعي من الصورة المقدمة.
فائز عزيز محمود وحسن صابر محمد وفرح صبхи

كما حصلت زيادة معنوية بتوزيع البوتاسيوم عند استخدام كلوريد الكالسيوم بتراكيز (0.3% و0.2%) في المجاميع الخضرية وبتركيز (0.2%) في المجاميع الجذرية مقارنة بمعاملة المقارنة وقد يكون السبب في ان زيادة تجذير النباتة بالكلسيوم يؤدي إلى زيادة امتصاص البوتاسيوم (32) و عند مقارنة تأثير حامض البوتاسيوم وكبيريتات المغنيسيوم وكلوريد الكالسيوم في توزيع البوتاسيوم في المجموعتين الخضرية والجذرية لوحظ ان المعاملة بكلوريد الكالسيوم تتفوق معنويًا على المعاملتين الأخريين بالنسبة للمجموع الخضري وحصل انخفاض معنوي بتوزيع البوتاسيوم في المجموع الجذري عند المعاملة بكبيريتات المغنيسيوم مقارنة بحامض البوتاسيوم وكلوريد الكالسيوم

كذالك بن الجدول حصول انخفاض معنوي بتوزيع الكلوريد في المجاميع الخضرية عند معاملة الترية بحامض البوتاسيوم وكبيريتات المغنيسيوم وبالتراكيز الثلاثة (0.3%, 0.2%, 0.1%)/ كغم ترية وفي المجاميع الجذرية عند معاملة الترية بحامض البوتاسيوم بالتركيزين (0.2%, 0.1%) مقارنة بمعاملة المقارنة في حين حصل زيادة معنوية في تركيز الكلوريد بالمجموعات الخضرية والجذرية عند معاملة الترية بكلوريد الكالسيوم وبالتراكيز الثلاثة (0.1%, 0.2%) وحامض البوتاسيوم بتراكيز (0.3%) (0.3%) في المجموع الخضرية.

ان الزيادة الحاصلة بتوزيع الكلوريد عند المعاملة بكلوريد الكالسيوم قد يعود لمعاملة الترية بالكلوريد على شكل كلوريد الكالسيوم وبالتالي توفرها في بيئة الجذور مما يساعد على امتصاصها وبالتالي زيادة تراكيزها في النباتات.

وعند مقارنة تأثير كل من حامض البوتاسيوم وكبيريتات المغنيسيوم وكلوريد الكالسيوم في تركيز الكلوريد لوحظ ان كم البوتاسيوم بتوزيع الكلوريد بالمجموعتين الخضرية والجذرية عند معاملة الترية بكلوريد الكالسيوم مقارنة بحامض البوتاسيوم وكبيريتات المغنيسيوم.

كذلك لوحظ حصول انخفاض معنوي بتوزيع الصوديوم في المجموع المجموع الخضرية عند معاملة الترية بالتركيز الثلاثة (0.3%, 0.2%, 0.1%)/ كغم ترية من كبيريتات المغنيسيوم وكلوريد الكالسيوم مقارنة بمعاملة المقارنة في حين حصل زيادة معنوية بتوزيع الصوديوم في المجموع الجذري عند معاملة الترية بحامض البوتاسيوم وكبيريتات المغنيسيوم بتراكيز (0.3%, 0.2%) مقارنة بمعاملة المقارنة بكلوريد الكالسيوم عند استخدام الترية (0.1%) والمعاملة بكلوريد الكالسيوم قد يعود السبب إلى ان زيادة البوتاسيوم يعمل على زيادة توزيع الصوديوم في النباتات (31) كذلك معاملة الترية بكلوريد الكالسيوم يعمل على تحصين نمو المجاميع الجذرية.

(32) وهذا بدوره يعمل على زيادة امتصاص النباتات الغذائية الموجودة في النباتات.

283
تأثير بعض المغذيات المعدنية في النمو

وعند مقارنة تأثيرات حامض البوريك وكبريتات المغنيسيوم وكالوريد الكالسيوم في ترکیب الصوديوم لوحظ عدم وجود اختلافات معنوية في المجموع الجذري في حين تفوق المعاملة بحامض البوريك في المجموع الخضري مقارنة بكبريات المغنيسيوم وكالوريد الكالسيوم

جدول (4) تأثيرات حامض البوريك وكبريتات المغنيسيوم وكالوريد الكالسيوم في التركيب المعدني للمجموع الخضري والجذري للنبات الشعير .

المعدلات ذات الأحرف المتشابهة لا تختلف معنويًا عند مستوى الاحتمال (5%) بحسب اختبار ذنكن متعدد الحدود

المصادر

2- حمود، جمال زهمك، مركز الإمارات للمعلومات البيئية والزراعية. (2007).
3- العربي، أحمد محمد. مركز الإمارات للمعلومات البيئية والزراعية وزراعة البيئة والمياه المصرية (2007).

284

27- عبد الرزاق إبراهيم البكري وهناء فاضل خميس الحماني محمود شاكر رشيد مجلة الزراعة العراقية، مجلد 5، عدد 3، ص 85-89 (2000).

