Numerical Solution of the Fredholm Integro-Differential Equations using High-Order Compact Finite Difference Method

S. R. Saber1, Y. A. Sabawi1,2, M. S. Hasso1

1 Department of Mathematics, Faculty of Science and Health, Koya University, Kurdistan Region - F.R. Iraq
2 Department of mathematics Education, Faculty of Education, Tishk International University, Erbil, Iraq

Abstract

This work aims to present a numerical method for solving Fredholm integro-differential equations (FIDE). This work discusses the use of a fourth and sixth-order compact finite difference method (CFDM) based on composite Boole’s rule to solve FIDE. The accuracy of the suggested schemes is computed through l^2 and l^∞ norms and the efficiency of the approach is assessed through short CPU-time values. An important factor of the proposed methods is leading to a reduction in the computational cost of the schemes. This is a significant improvement over traditional methods, which often struggle to maintain high accuracy levels. The presented methods are shown to be the fourth and sixth order in space. Numerical experiments are presented to illustrate the performance of the suggested methods. Overall, the proposed method is a significant step forward in the field of solving FIDE problems. It offers a robust and efficient numerical approach that can achieve high levels of accuracy where exact solutions are hard to obtain.

Introduction

Initial and boundary value problems with integro-differential equations are common in applications of (bio-)engineering as well as physical and biological modeling. CFDM to approximate solutions to such problems, especially in the context of the ordinary and partial differential equation has attracted much interest [1-10].

However, comparatively, there has been less progress made in determining high-order CFDM in terms of integro-differential equations (IDE). Therefore, considerable works have been focusing on developing efficient high-order numerical schemes for approximating solutions of integro-differential equations. This work concentrates on the second order FIDE:

$$u''(x) + p u(x) = f(x) + \lambda \int_{a}^{b} k(x,t) u(t) dt,$$

with Dirichlet boundary conditions:

$$u(a) = \alpha, \quad u(b) = \beta.$$

For $x, t \in [a, b]$, where $\lambda, p, \alpha,$ and β are constant values, $f(x)$ and $k(x,t)$ are known functions and $u(x)$ is the solution to be determined.
Recently, there has been a growing interest in using higher-order numerical methods for solving partial differential equations (ODEs) and (PDEs). One approach that has gained attention is the use of compact difference approximations, which can achieve a high level of accuracy with a relatively small number of grid points. These approximations make use of five grid points, corresponding to a compact patch of three cells surrounding a selected node, to cancel out second-order truncation error terms. This allows for the development of alternative, lower-derivative expressions that are equivalent to the higher-order truncation error terms [10]. This approach can lead to more efficient and accurate solutions for ODEs and PDEs.

Several numerical solutions of the integro-differential equations have been studied by compact finite difference methods including [11-13]. Numerous authors have developed numerical methods for integral and integro-differential equations recently, see references [14-19].

This work aims to derive a general formulation and approach for developing such higher-order compact (HOC) schemes for the second-order Volterra integral. This derivation is based on applying numerical quadrature rules along with the properties of ordinary differential equations. Furthermore, we compute the order of convergence numerically for each method. The proposed methods are tested on various PIDE to demonstrate their efficiency and accuracy in providing approximate solutions. The results show that the of order fourth and sixth CFDM is effective in solving PIDEs and can be used to obtain reliable solutions for a variety of applications.

The work is organized as follows. In section 2, the derivation of HOC method is given in detail. Some numerical experiments and algorithms are shown in section 3. Finally, conclusions are given in section 4.

2. Compact finite difference method

This section presents a way to develop a CFDM based on the fourth and sixth-order approximation for the FIDE.

2.1 Fourth-order (CFDM4)

To derive the CFDM for (1), applying \(\delta_x^2 u_i = \frac{u_{i+1} - 2u_i + u_{i-1}}{h^2} \) is a second-order central difference scheme [9], gives:

\[
\delta_x^2 u_i = u_i'' + \frac{h^2}{12} u_i^{(4)} + O(h^4). \tag{3}
\]

To obtain a compact \(O(h^4) \) approximation, we take the derivative of Eq. (1) with respect to \(x \), which gives:

\[
u_i^{(4)} = -pu_i'' + f_i'' + \lambda \int_a^b k''_{ij} u_j dt, \tag{4}
\]

where \(u_i = u(x), f_i = f(x), k_{ij} = k(x,t) \) and \(u_j = u(t) \). Inserting Eq. (4) into Eq. (3), we have:

\[
\delta_x^2 u_i = u_i'' + \frac{h^2}{12} \left(-pu_i'' + f_i'' + \lambda \int_a^b k''_{ij} u_j dt\right) + O(h^4). \tag{5}
\]

Some simplification in the above equation implies that:

\[
u_i'' = \frac{\delta_x^2 u_i - \frac{h^2}{12} f_i'' - \frac{\lambda h^2}{12} \int_a^b k''_{ij} u_j dt}{1 - \frac{ph^2}{12}} + O(h^4). \tag{6}
\]

Substituting Eq. (6) into Eq. (1) we obtain:

\[
\delta_x^2 u_i + p \left(1 - \frac{ph^2}{12}\right) u_i = \left(1 - \frac{ph^2}{12}\right)f_i + \frac{h^2}{12} f_i'' + \lambda \int_a^b k''_{ij} u_j dt + \int_a^b k''_{ij} u_j dt. \tag{7}
\]

The integral parts on the right-hand side of Eq. (7) will be handled numerically using the composite Boole’s rule [20] given by:

\[
\int_{x_0}^{x_n} u(x)dx = \frac{2h}{45} \left[7u(x_0) + 32 \sum_{j=1}^{n/2} u(x_{2j-1}) + 12 \sum_{j=1}^{(n/4)} u(x_{4j-2}) + 14 \sum_{j=1}^{(n/8)-1} u(x_{4j}) + 7u(x_n)\right]. \tag{8}
\]

Therefore, using Eq. (8) for Eq. (7) we obtain:
Substituting Eq. (9) and Eq. (10) into Eq. (7) then using second-order central differencing scheme we obtain:

\[y_1 u_{i+1} + y_2 u_i + y_1 u_{i-1} - \sum_{j=1}^{n} a_{(i,j)} u_{j-1} - \sum_{j=1}^{n} b_{(i,j)} u_{j-2} - \sum_{j=1}^{n-1} c_{(i,j)} u_{j} = f_i + \alpha_i u_0 + \beta_i u_w \]

where:

\[y_1 = 1, \quad y_2 = -2 + pH^2 - \frac{p^2h^4}{12} \]

\[a_{(i,j)} = \left(\frac{32\lambda h^3 - 32\lambda ph^5}{270} \right) k_{(i,j-1)} + \frac{32\lambda ph^3}{270} \left(k_{(i+1,j-1)} + k_{(i-1,j-1)} \right) \]

\[b_{(i,j)} = \left(\frac{12\lambda h^3 - 12\lambda ph^5}{270} \right) k_{(i,j-2)} + \frac{12\lambda ph^3}{270} \left(k_{(i+1,j-2)} + k_{(i-1,j-2)} \right) \]

\[c_{(i,j)} = \left(\frac{14\lambda h^3 - 14\lambda ph^5}{270} \right) k_{(i,j)} + \frac{14\lambda ph^3}{270} \left(k_{(i+1,j)} + k_{(i-1,j)} \right) \]

\[f_i = \frac{h^2}{12} (f_{i+1} + 10f_i + f_{i-1}) \]

\[\alpha_i = \left(\frac{7\lambda h^3 - 7\lambda ph^5}{270} \right) k_{(i,0)} + \frac{7\lambda ph^3}{270} \left(k_{(i+1,0)} + k_{(i-1,0)} \right) \]

\[\beta_i = \left(\frac{7\lambda h^3 - 7\lambda ph^5}{270} \right) k_{(i,n)} + \frac{7\lambda ph^3}{270} \left(k_{(i+1,n)} + k_{(i-1,n)} \right) \]

2.2 Sixth-order (CFDM6)

Starting with the derivation of the CFDM6 for (1), gives:

\[\delta^2_x u_i = u_i'' + \frac{h^2}{12} u_i^{(4)} + \frac{h^4}{360} u_i^{(6)} + O(h^6). \]

Eq. (12) includes both \(O(h^2) \) and \(O(h^4) \) terms since we want to approximate both of them in order to create an \(O(h^6) \) scheme. Applying \(\delta^2_x \) to \(u_i^{(4)} \), we obtain:

\[u_i^{(6)} = \delta^2_x u_i^{(4)} + O(h^2). \]

Substituting Eq. (13) into Eq. (12) yields:

\[\delta^2_x u_i = u_i'' + \frac{h^2}{12} u_i^{(4)} + \frac{h^4}{360} \left(\delta^2_x u_i^{(4)} + O(h^2) \right) + O(h^6). \]

Go back to Eq. (1), with take derivative, becomes:

\[u_i^{(4)} = -P u_i'' + f_i'' + \lambda \int_a^b k_{(i,j)} u_j dt. \]

Substituting Eq. (15) into Eq. (14), leads to:
\[\delta^2_x u_i = u''_i + \left(\frac{h^2}{12} + \frac{h^4}{360} \delta^2_x \right) \left(-pu''_i + f''_i + \lambda \int_a^b k''_{i(i,j)} u_j \, dt \right) + O(h^6), \]

(16)

with some calculations, Eq. (16), yields:

\[u''_i = \frac{\delta^2_x u_i - \left(\frac{h^2}{12} + \frac{h^4}{360} \delta^2_x \right) f''_i + \lambda \int_a^b k''_{i(i,j)} u_j \, dt}{1 - p \left(\frac{h^2}{12} + \frac{h^4}{360} \delta^2_x \right)} + O(h^6). \]

(17)

Substituting Eq. (17) into Eq. (1) implies that:

\[\delta^2_x u_i + p \left(1 - p \left(\frac{h^2}{12} + \frac{h^4}{360} \delta^2_x \right) \right) u_i = \left(1 - p \left(\frac{h^2}{12} + \frac{h^4}{360} \delta^2_x \right) \right) f_i'' + \lambda \int_a^b k''_{i(i,j)} u_j \, dt \]

\[+ \lambda \left(1 - p \left(\frac{h^2}{12} + \frac{h^4}{360} \delta^2_x \right) \right) \int_a^b k''_{i(i,j)} u_j \, dt \]

(18)

Setting \(\delta^2_x f''_i = (f''_{i+1} - 2f''_i + f''_{i-1})/h^2 \) and \(\delta^2_x k''_{i(i,j)} = (k''_{i(i+1,j)} - 2k''_{i(i,j)} + k''_{i(i-1,j)})/h^2 \), gives:

\[\left(-2 + ph^2 - \frac{28}{360} p^2 h^4 \right) u_i + \left(1 - \left(\frac{p^2 h^4}{360} \right) \right) \left(u_{i+1} + u_{i-1} \right) = \left(h^2 - \frac{28}{360} ph^4 \right) f_i \]

\[- \frac{ph^4}{360} (f_{i+1} + f_{i-1}) + \frac{28}{360} h^2 f''_i + \frac{h^4}{360} (f''_{i+1} + f''_{i-1}) + \left(h^2 - \frac{28}{360} ph^4 \right) \int_a^b k''_{i(i,j)} u_j \, dt \]

\[- \frac{ph^4}{360} \int_a^b (k''_{i(i+1,j)} + k''_{i(i-1,j)}) u_j \, dt + \frac{28}{360} h^4 \int_a^b k''_{i(i,j)} u_j \, dt + \left(h^2 - \frac{28}{360} ph^4 \right) \int_a^b (k''_{i(i+1,j)} + k''_{i(i-1,j)}) u_j \, dt. \]

(19)

The integral parts on the right-hand side of Eq. (19) will be handled numerically using the composite Boole’s rule given by (8):

\[\int_a^b k_{i(i,j)} u_j \, dt = \frac{2h}{45} \left[7k_{i(i,0)} u_0 + 32 \Sigma_{j=1}^n 7k_{i(j,1)} u_{j-1} + 12 \Sigma_{j=1}^n k_{i(j+1,0)} u_{j-2} \right. \]

\[+ 14 \Sigma_{j=1}^{(n)} k_{i(i,j)} u_{j-1} + 7k_{i(n)} u_n \]

(20)

\[\int_a^b (k_{i(i+1,j)} + k_{i(i-1,j)}) u_j \, dt = \frac{2h}{45} \left[7(k_{i(i+1,0)} + k_{i(i-1,0)}) u_0 + 32 \Sigma_{j=1}^n (k_{i(i+1,j-1)} + k_{i(i-1,j-1)}) u_{j-1} \right. \]

\[+ 12 \Sigma_{j=1}^{(n)} (k_{i(i+1,j-2)} + k_{i(i-1,j-2)}) u_{j-2} + 14 \Sigma_{j=1}^{(n)} (k_{i(i+1,j)} + k_{i(i-1,j)}) u_j \]

\[+ 7(k_{i(i+1,n)} + k_{i(i-1,n)}) u_n \]

(21)

\[\int_a^b k''_{i(i,j)} u_j \, dt = \frac{2h}{45} \left[7k''_{i(i,0)} u_0 + 32 \Sigma_{j=1}^n k''_{i(j,1)} u_{j-1} + 12 \Sigma_{j=1}^n k''_{i(j+1,0)} u_{j-2} \right. \]

\[+ 14 \Sigma_{j=1}^{(n)} k''_{i(i,j)} u_{j-1} + 7k''_{i(n)} u_n \]

(22)

\[\int_a^b (k''_{i(i+1,j)} + k''_{i(i-1,j)}) u_j \, dt = \frac{2h}{45} \left[7(k''_{i(i+1,0)} + k''_{i(i-1,0)}) u_0 + 32 \Sigma_{j=1}^n (k''_{i(i+1,j-1)} + k''_{i(i-1,j-1)}) u_{j-1} \right. \]

\[+ 14 \Sigma_{j=1}^{(n)} k''_{i(i,j)} u_{j-1} + 7k''_{i(n)} u_n \]
+12 \sum_{j=1}^{n} (k''_{(i+1,4j-2)} + k''_{(i-1,4j-2)}) u_{4j-2} + 14 \sum_{j=1}^{n} (k''_{(i+1,4j)} + k''_{(i-1,4j)}) u_{4j} + 7 (k''_{(i+1,n)} + k''_{(i-1,n)}) u_{n}.

(23)

Substituting Eq. (20) – Eq. (23) into Eq. (19) we obtain:

\[
y_1 u_{i+1} + y_2 u_i + y_1 u_{i-1} - \sum_{j=1}^{n} a_{(i,j)} u_{2j-1} - \sum_{j=1}^{n} b_{(i,j)} u_{4j-2} - \sum_{j=1}^{n} c_{(i,j)} u_{4j} = f_i + \alpha u_0 + \beta_i u_n
\]

(24)

where:

\[
y_1 = 1 - \left(\frac{p^2 h^6}{360}\right), \quad y_2 = -2 + 2ph^2 - \frac{7}{90}p^2 h^4
\]

\[
a_{(i,j)} = \left(\frac{64 h^3}{45} - \frac{224 lph^5}{2025}\right) k_{(i,2j-1)} - \frac{8}{2025} (k_{(i+1,2j-1)} + k_{(i-1,2j-1)}) + \frac{224 h^5}{2025} k'_{(i,2j-1)} + \frac{8}{2025} k''_{(i,2j-1)}
\]

\[
b_{(i,j)} = \left(\frac{44 h^3}{45} - \frac{224 lph^5}{2025}\right) k_{(i,4j-2)} - \frac{3}{2025} (k_{(i+1,4j-2)} + k_{(i-1,4j-2)}) + \frac{84 h^5}{2025} k'_{(i,4j-2)} + \frac{3}{2025} k''_{(i,4j-2)}
\]

\[
c_{(i,j)} = \left(\frac{28 h^3}{45} - \frac{98 lph^5}{2025}\right) k_{(i,j)} - \frac{7}{4050} (k_{(i+1,j)} + k_{(i-1,j)}) + \frac{98 h^5}{2025} k'_{(i,j)} + \frac{7}{4050} (k''_{(i+1,j)} + k''_{(i-1,j)}) + k''_{(i,j)}
\]

\[
f_i = \left(h^2 - \frac{7}{90} p h^4\right) f_i - \frac{9h^4}{360} (f_{i+1} + f_{i-1}) + \frac{7}{90} h^4 f''_i + \frac{h^4}{360} (f''_{i+1} + f''_{i-1})
\]

\[
\alpha_i = \left(\frac{14 h^3}{45} - \frac{49 lph^5}{2025}\right) k_{(i,0)} - \frac{7}{8100} (k_{(i+1,0)} + k_{(i-1,0)}) + \frac{49 h^5}{2025} k'_{(i,0)} + \frac{7}{8100} (k''_{(i+1,0)} + k''_{(i-1,0)}) + \frac{49 h^5}{2025} k''_{(i,n)} + \frac{7}{8100} (k''_{(i+1,n)} + k''_{(i-1,n)})
\]

\[
\beta_i = \left(\frac{14 h^3}{45} - \frac{49 lph^5}{2025}\right) k_{(i,n)} - \frac{7}{8100} (k_{(i+1,n)} + k_{(i-1,n)}) + \frac{49 h^5}{2025} k'_{(i,n)} + \frac{7}{8100} (k''_{(i+1,n)} + k''_{(i-1,n)})
\]

3. Numerical Experiments

The section shows the accuracy of a proposed method, using MATLAB programming. The error norms of \(l^2\) and \(l^\infty\) are used to measure the error between the numerical and analytical solutions.

We denote by \(E\) errors terms given by:

\[E(x) = u(x) - U_{\text{Appro}}(x)\]

Let us introduce the three accuracy indicators when using space step size \(h\), as follows:

- The Absolute (pointwise) error as:

\[E(x) = |E(x)|\]

- The \(l^\infty\)-norm and \(l^2\)-norm of the error as:

\[l^\infty(E, h) = \max_{0 \leq i \leq N} |E(x_i)|, \quad l^2(E, h) = \sqrt{h \sum_{i=0}^{N} |E(x_i)|^2}\]

- The order of convergence (Rate) is calculated as:

\[\text{Rate} = \frac{\log \left(\frac{\text{Error}(N_1)}{\text{Error}(N_2)} \right)}{\log \left(\frac{N_2}{N_1} \right)}\]

Algorithm

Input: \(N(\text{rem}(N, 4) = 0), a, b, p,\) and boundary condition \(u_0\) and \(u_n\), where \((a = x_0, b = x_n)\).
Set: \(h = \frac{b-a}{N} \).

for \(i \leftarrow 0 \) to \(N \) do
 for \(j \leftarrow 0 \) to \(N \) do
 \(x_i = a + ih \).
 \(t_j = a + jh \).
 end for
end for

for \(i \leftarrow 1 \) to \(N - 1 \) do
 \(C_i = f_i + \alpha_i u_0 + \beta_i u_n \).
 for \(j \leftarrow 1 \) to \(\left\lfloor \frac{N}{2} \right\rfloor \) do
 \(B_{(i,2j-1)} \leftarrow a_{(i,j)} \).
 end for
 for \(j \leftarrow 1 \) to \(\left\lfloor \frac{N}{4} \right\rfloor \) do
 \(B_{(i,4j-2)} \leftarrow b_{(i,j)} \).
 end for
 for \(j \leftarrow 1 \) to \(\left\lfloor \frac{N}{4} - 1 \right\rfloor \) do
 \(B_{(i,4j)} \leftarrow c_{(i,j)} \).
 end for
end for

for \(i \leftarrow 1 \) to \(N - 1 \) do
 \(B_{(i,i)} = B_{(i,0)} + \gamma_2 \)
 if \(i <= N - 2 \) then
 \(B_{(i+1,i+1)} = B_{(i+1,0)} + \gamma_1 \)
 \(B_{(i+1,i)} = B_{(i+1,0)} + \gamma_1 \)
 end if
end for

\(C = [C_1 - \gamma_1 u_0 ; C_2 ; C_{n-2} ; C_{n-1} - \gamma_1 u_n] \)

Output: \(U \leftarrow B \setminus C \)

Example 1: Consider FIDE:

\[
 u''(x) + 5u(x) = 4 \sin nx + \frac{10 \pi}{3} \cos s(x) + \frac{5}{3} \int_0^{2\pi} \cos(x) t u(t) \, dt,
\]

with boundary conditions: \(u(0) = 0 \), \(u(2\pi) = 0 \),
and exact solution is \(u(x) = \sin (x) \).

Table 1. Numerical Results for Example 1, by using CFDM4 and CFDM6 with \(N = 12 \), \(h = 0.5236 \) and \(0 \leq x \leq 2\pi \)

<table>
<thead>
<tr>
<th>(x_i)</th>
<th>(u(x))</th>
<th>(U_{\text{Appro}}(x))</th>
<th>(U_{\text{Appro}}(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi/6)</td>
<td>5.0000e-01</td>
<td>5.0059e-01</td>
<td>4.9998e-01</td>
</tr>
</tbody>
</table>
\[
\begin{array}{|c|c|c|c|}
\hline
\pi/3 & 8.6603e-01 & 8.6615e-01 & 8.6606e-01 \\
\pi/2 & 1.0000e+00 & 9.9967e-01 & 1.0001e+00 \\
2\pi/3 & 8.6603e-01 & 8.6627e-01 & 8.6605e-01 \\
5\pi/6 & 5.0000e-01 & 5.0143e-01 & 4.9991e-01 \\
\pi & 1.2246e-16 & 1.8444e-03 & -1.4901e-04 \\
7\pi/6 & -5.0000e-01 & -4.9923e-01 & -5.0009e-01 \\
4\pi/3 & -8.6603e-01 & -8.6693e-01 & -8.6600e-01 \\
3\pi/2 & -1.0000e+00 & -1.0016e+00 & -9.9992e-01 \\
5\pi/3 & -8.6603e-01 & -8.6704e-01 & -8.6599e-01 \\
11\pi/6 & -5.0000e-01 & -5.0007e-01 & -5.0002e-01 \\
l^2(E, h) & 2.4130e-03 & 1.7052e-04 \\
l^\infty(E, h) & 1.8444e-03 & 1.4901e-04 \\
CPU-time & 1.784562 & 1.895163 \\
\hline
\end{array}
\]

Table 2: Rate Convergence of CFDM4 and CFDM6 for \(l^2(E, h)\) in Example 1

\[
\begin{array}{|c|c|c|}
\hline
N & \frac{\|u - u_h\|}{\|u\|} \text{ - CFDM4} & \text{Rate} & \frac{\|u - u_h\|}{\|u\|} \text{ - CFDM6} & \text{Rate} \\
\hline
12 & 2.4130e-03 & & 1.7052e-04 & \\
24 & 1.4037e-04 & 4.1035 & 2.3573e-06 & 6.1767 \\
48 & 8.6536e-06 & 4.0198 & 3.5835e-08 & 6.0396 \\
96 & 5.3909e-07 & 4.0047 & 5.5610e-10 & 6.0099 \\
\hline
\end{array}
\]

Table 3: Rate Convergence of CFDM4 and CFDM6 for \(l^\infty(E, h)\) in Example 1

\[
\begin{array}{|c|c|c|}
\hline
N & \frac{\|u - u_h\|}{\|u\|} \text{ - CFDM4} & \text{Rate} & \frac{\|u - u_h\|}{\|u\|} \text{ - CFDM6} & \text{Rate} \\
\hline
12 & 1.8444e-03 & & 1.4901e-04 & \\
24 & 1.0831e-04 & 4.0899 & 2.0584e-06 & 6.1777 \\
48 & 6.8042e-06 & 3.9926 & 3.1289e-08 & 6.0397 \\
\hline
\end{array}
\]

Figure 1: Exact and Approximate Solution of CFDM4 and CFDM6 for Example 1 with \(N=20\) and \(h = 0.3142\)
Example 2. Consider FIDE:

\[u''(x) - 2u(x) = 2e^{-2x} - \left(-\frac{9e^{-8} + 1}{2} \right)x^4 + \int_0^4 2x^4 t u(t) \, dt \]

with boundary conditions: \(u(0) = 1 \), \(u(4) = e^{-8} \)
and the exact solution is \(u(x) = e^{-2x} \).

Table 4. Numerical Results for Example 2, by using CFDM4 and CFDM6

<table>
<thead>
<tr>
<th>(x_i)</th>
<th>(u(x))</th>
<th>(U_{\text{Appro}}(x))</th>
<th>(U_{\text{Appro}}(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CFDM4</td>
<td>CFDM6</td>
</tr>
<tr>
<td>0.3333</td>
<td>5.1342e-01</td>
<td>5.1339e-01</td>
<td>5.1341e-01</td>
</tr>
<tr>
<td>0.6667</td>
<td>2.6360e-01</td>
<td>2.6357e-01</td>
<td>2.6360e-01</td>
</tr>
<tr>
<td>1</td>
<td>1.3534e-01</td>
<td>1.3531e-01</td>
<td>1.3534e-01</td>
</tr>
<tr>
<td>1.3333</td>
<td>6.9483e-02</td>
<td>6.9470e-02</td>
<td>6.9488e-02</td>
</tr>
<tr>
<td>1.6667</td>
<td>3.5674e-02</td>
<td>3.5672e-02</td>
<td>3.5683e-02</td>
</tr>
<tr>
<td>2</td>
<td>1.8316e-02</td>
<td>1.8325e-02</td>
<td>1.8330e-02</td>
</tr>
<tr>
<td>2.3333</td>
<td>9.4036e-03</td>
<td>9.4249e-03</td>
<td>9.4246e-03</td>
</tr>
<tr>
<td>2.6667</td>
<td>4.8279e-03</td>
<td>4.8608e-03</td>
<td>4.8561e-03</td>
</tr>
<tr>
<td>3</td>
<td>2.4788e-03</td>
<td>2.5210e-03</td>
<td>2.5129e-03</td>
</tr>
<tr>
<td>3.3333</td>
<td>1.2726e-03</td>
<td>1.3184e-03</td>
<td>1.3087e-03</td>
</tr>
<tr>
<td>(l^2(E, h))</td>
<td>5.5724e-05</td>
<td>4.0040e-05</td>
<td>3.6067e-05</td>
</tr>
<tr>
<td>(l^{\infty}(E, h))</td>
<td>4.5808e-05</td>
<td>3.1245e-05</td>
<td>3.1245e-05</td>
</tr>
<tr>
<td>CPU-time</td>
<td>1.353563</td>
<td>1.324556</td>
<td>1.324556</td>
</tr>
</tbody>
</table>

Figure 2: Comparison Absolute Error of CFDM4 and CFDM6 for Example 1 with \(N=12 \) and \(h=0.5236 \)
Figure 3. Exact and Approximate Solution of CFDM4 and CFDM6 for Example 2 with $N = 20$ and $h = 0.2$

Table 5. Rate Convergence of CFDM4 and CFDM6 for $l^2(E, h)$ in Example 2

<table>
<thead>
<tr>
<th>N</th>
<th>l^2 − CFDM4</th>
<th>Rate</th>
<th>l^2 − CFDM6</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>5.5724e-05</td>
<td></td>
<td>4.0040e-05</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>2.4233e-06</td>
<td>4.5233</td>
<td>7.7961e-07</td>
<td>5.6825</td>
</tr>
<tr>
<td>48</td>
<td>1.4023e-07</td>
<td>4.1111</td>
<td>1.2921e-08</td>
<td>5.9150</td>
</tr>
<tr>
<td>96</td>
<td>8.6612e-09</td>
<td>4.0171</td>
<td>2.0494e-10</td>
<td>5.9784</td>
</tr>
</tbody>
</table>

Table 6. Rate Convergence of CFDM4 and CFDM6 for $l^\infty(E, h)$ in Example 2

<table>
<thead>
<tr>
<th>N</th>
<th>l^∞ − CFDM4</th>
<th>Rate</th>
<th>l^∞ − CFDM6</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>4.5808e-05</td>
<td></td>
<td>3.6067e-05</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>2.0689e-06</td>
<td>4.4687</td>
<td>6.9973e-07</td>
<td>5.6877</td>
</tr>
<tr>
<td>48</td>
<td>1.3230e-07</td>
<td>3.9670</td>
<td>1.1646e-08</td>
<td>5.9089</td>
</tr>
<tr>
<td>96</td>
<td>8.3039e-09</td>
<td>3.9939</td>
<td>1.8469e-10</td>
<td>5.9786</td>
</tr>
</tbody>
</table>
Example 3. Consider FIDE:

\[u''(x) + 3u(x) = 2\cos(x) + 3\pi e^{2x} + \frac{3}{2} \int_0^\pi e^{2x} t^2 u(t) \, dt \]

with boundary conditions: \(u(0) = 1, \quad u(\pi) = -1 \)
and the exact solution is \(u(x) = \cos(x) \).

Table 7. Numerical results for Example 3, by using CFDM4 and CFDM6 with \(N = 12 \) and \(h = 0.2618 \) and \(0 \leq x \leq \pi \)

<table>
<thead>
<tr>
<th>(x_i)</th>
<th>(u(x))</th>
<th>(U_{\text{Appro}}(x))</th>
<th>(U_{\text{Appro}}(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CFDM4</td>
<td>CFDM6</td>
<td>CFDM4</td>
</tr>
<tr>
<td>(\pi/12)</td>
<td>9.6593e-01</td>
<td>9.6594e-01</td>
<td>9.6592e-01</td>
</tr>
<tr>
<td>(\pi/6)</td>
<td>8.6603e-01</td>
<td>8.6606e-01</td>
<td>8.6602e-01</td>
</tr>
<tr>
<td>(\pi/4)</td>
<td>7.0711e-01</td>
<td>7.0715e-01</td>
<td>7.0710e-01</td>
</tr>
<tr>
<td>(\pi/3)</td>
<td>5.0000e-01</td>
<td>5.0006e-01</td>
<td>4.9999e-01</td>
</tr>
<tr>
<td>5(\pi/12)</td>
<td>2.5882e-01</td>
<td>2.5888e-01</td>
<td>2.5881e-01</td>
</tr>
<tr>
<td>(\pi/2)</td>
<td>6.1232e-17</td>
<td>5.0538e-05</td>
<td>-3.5289e-06</td>
</tr>
<tr>
<td>7(\pi/12)</td>
<td>-2.5882e-01</td>
<td>-2.5878e-01</td>
<td>-2.5882e-01</td>
</tr>
<tr>
<td>2(\pi/3)</td>
<td>-5.0000e-01</td>
<td>-4.9999e-01</td>
<td>-5.0000e-01</td>
</tr>
<tr>
<td>3(\pi/4)</td>
<td>-7.0711e-01</td>
<td>-7.0711e-01</td>
<td>-7.0710e-01</td>
</tr>
<tr>
<td>5(\pi/6)</td>
<td>-8.6603e-01</td>
<td>-8.6605e-01</td>
<td>-8.6602e-01</td>
</tr>
<tr>
<td>(l^2(E, h))</td>
<td>6.1699e-05</td>
<td>9.1201e-06</td>
<td>1.927249</td>
</tr>
<tr>
<td>(l^\infty(E, h))</td>
<td>5.7455e-05</td>
<td>7.9073e-06</td>
<td>1.927249</td>
</tr>
</tbody>
</table>
Figure 5. Exact and Approximate Solution of CFDM4 and CFDM6 for Example 3 with \(N = 20 \) and \(h = 0.1571 \)

Table 8. Rate Convergence of CFDM4 and CFDM6 for \(l^2(E, h) \) in Example 3

<table>
<thead>
<tr>
<th>(N)</th>
<th>(l^2) –CFDM4</th>
<th>Rate</th>
<th>(l^2) –CFDM6</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>6.1699e-05</td>
<td></td>
<td>9.1201e-06</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>4.1583e-06</td>
<td>3.8912</td>
<td>1.3713e-07</td>
<td>6.0554</td>
</tr>
<tr>
<td>48</td>
<td>2.6449e-07</td>
<td>3.9747</td>
<td>2.1224e-09</td>
<td>6.0137</td>
</tr>
<tr>
<td>96</td>
<td>1.6602e-08</td>
<td>3.9938</td>
<td>3.3054e-11</td>
<td>6.0047</td>
</tr>
</tbody>
</table>

Table 9. Rate Convergence of CFDM4 and CFDM6 for \(l^\infty(E, h) \) in Example 3

<table>
<thead>
<tr>
<th>(N)</th>
<th>(l^\infty) –CFDM4</th>
<th>Rate</th>
<th>(l^\infty) –CFDM6</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>5.7455e-05</td>
<td></td>
<td>7.9073e-06</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3.8721e-06</td>
<td>3.8912</td>
<td>1.2174e-07</td>
<td>6.0213</td>
</tr>
<tr>
<td>48</td>
<td>2.4621e-07</td>
<td>3.9752</td>
<td>1.8841e-09</td>
<td>6.0138</td>
</tr>
<tr>
<td>96</td>
<td>1.5456e-08</td>
<td>3.9937</td>
<td>2.9363e-11</td>
<td>6.0037</td>
</tr>
</tbody>
</table>
To provide the summary of the proposed method to find the approximate solutions based on applying compact finite difference on FIDE of examples (1-3) that have been illustrated in Tables (1-9). The error norms of l^2 and l^∞ are reported in Tables (2,3,5,6,8 and 9) of the fourth order for space levels and compared with the results of the sixth order. From Tables (1-9) the results of the sixth order are better than the results from the fourth. One of the reasons is due to the errors produced by the sixth order scheme being much close to zero and the obtained numerical solutions indicate that the method is reliable and yields result compatible with analytical solutions. In addition, the scheme is shown that the fourth and sixth-orders converge in space.

Conclusion

In this paper, we proposed a robust and efficient numerical scheme for solving FIDE problems using a compact finite difference method based on fourth and sixth orders. The key idea of this research was to implement a combination of fourth and sixth orders, with the composite Boole’s rule to solve FIDE, resulting in a highly accurate and computationally efficient numerical solution FIDE. Additionally, the accuracy of the proposed method is demonstrated by considering three test problems. The precision of the scheme has been measured by considering several test problems and calculating l^2 and l^∞ error norms for different space levels. From Tables (1-9) and Figures (1,3 and 5), numerical experiments demonstrated that the results that are obtained from the proposed method are efficient, reliable, fruitful, and powerful. Overall, the proposed method is a significant step forward in the field of solving FIDE problems. It offers a robust and efficient numerical approach that can achieve high levels of accuracy. In the future, this work can be solved by finite element methods for more details see [21-27].

Acknowledgment

Authors would like to thank of the financial support from Koya University.

Conflict of interest

The author has no conflict of interest.

Reference

الحل العددي لمعادلة فريدهولم التكاملية التفاضلية باستخدام طريقة الفروق المحدودة المدمجة عالية الترتيب

سورمي رسول صابر و يونس عبد سبعاوي و محمد شامي حسو

قسم علوم الرياضيات، كلية العلوم والصحة، جامعة كويه، كوردستان العراق، العراق.

قسم تربية الرياضيات، كلية التربية، جامعة تشك الدوليه، كوردستان العراق، العراق.

الخلاصة

الهدف من هذا العمل هو تقديم طريقة عدديه لحل معادلة فريدهولم التكاملية التفاضلية. ويتضمن هذا العمل استخدام طريقة الفروق المحدودة المدمجة عالية الترتيب. يتم استخدام هذه الطريقة في حل المعادلة FIDE، وذلك باستخدام الطريقة المبتكرة Boole المرتبطة بالفرقة المحدودة المدمجة. يتم قياس الدقة للحل باستخدام الأبعاد المربعة للكيانات المفترضة. وتم تقييم كفاءة هذه الطريقة في هذا العمل، وتمت دقة الحل باستخدام طريقة Boole المرتبطة بالفرقة المحدودة المدمجة. يتضح أن هذه الطريقة ملهمة في حل المعادلات التفاضلية. إضافةً إلى ذلك، فإن هذه الطريقة تقدم حلولاً فعالة وɛً عددياً عالية الدقة. في حالات من الصعوبة، فإن هذه الطريقة تقدم حلولاً فعالة وɛً عددياً عالية الدقة.