
 EDUSJ, Vol, 33, No: 1, 2024 (90-98)

90

Journal of Education and Science (ISSN 1812-125X)

www.edusj.mosuljournals.com

Unified Modeling Language Quantitative Measures Based on a Behavioural Model

Marwah M. A. Dabdawb

Software Department, College of Computer Science and Mathematics, University of Mosul, Mosul, Iraq

Article information Abstract

Article history:

Received: December 29, 2023

Accepted: February 14, 2024

Available online: March 01, 2024

 Behavioral diagrams in Unified Modeling Language reflect the interaction between

system components and give a comprehensive description and visualization of the system

during the design phase. One of the most important behavioral diagrams is the sequence

diagram which describes the chronological sequence of events between the components of

the system. The process of extracting information and metrics from a sequence diagram is

time-consuming so creating a special tool to help developers obtain information from the

sequence diagram has become necessary because of the great advantages and ease it

provides. This paper aims to build a tool that extracts information from the sequence

diagram, creates a table that includes this information, and then calculates three categories

of metrics related to the sequence diagram which are size, complexity, and level of detail.

These categories include 15 metrics to give quantitative values that indicate software

quality which is used to estimate the schedule, cost, effort, and other resources in the

software development process. As a case study, the hotel reservation system is adopted

and constructed as two versions of sequence diagrams for comparison purposes. The

results showed a quantitative measurement of small and unnoticeable differences between

the two diagrams.

Keywords:

Sequence Diagram

Complexity

Software size

Level of Detail

Software Metrics

Correspondence:

Marwah M. A. Dabdawb

marwa_marwan21@uomosul.edu.iq

DOI: 10.33899/edusj.2024.145662.1416, ©Authors, 2024, College of Education for Pure Science, University of Mosul.

This is an open access article under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

 Unified Modeling Language UML is a standard toolkit consisting of an integrated set of several diagrams. It helps

software developers understand, develop, modify, and maintain software systems [1]. UML is a visual tool used to illustrate,

define, build, and record data pertaining to software-centered systems. It establishes a standardized method of representing a

system model, encompassing abstract concepts, and employing a variety of diagrams and symbols. This facilitates the creation

of a universal visual language among software developers, architects, and stakeholders, enabling better comprehension,

design, and documentation of software systems. Understanding modeling, using, and applying UML can make the process of

software development more efficient [2].

 While UML isn’t a programming language, it’s closely tied to analysis and object-oriented design and is commonly

utilized by software developers. It serves the purpose of creating diagrams and offering programmers readily accessible

examples and illustrative models for effective communication and problem-solving. [3].

There are many tools (commercial and open source) available for designing UML diagrams, the most famous of which are [4]:

IBM Rational Rose, Sparx Systems Enterprise Architect, Visual Paradigm, Lucidchart, WhitestarUML, and ArgoUML. The

UML includes a variety of diagrams that can be broadly categorized into two main types: structural diagrams and behavioral

diagrams. Structural diagrams concentrate on representing the static structure of a system, emphasizing the components that

make up the system and their relationships [5]. Behavioral diagrams focus on capturing the dynamic aspects of a system,

showcasing how it behaves and interacts with its components over time [6].

 More specifically, the sequence diagram SD is one of the important dynamic behavioral UML diagrams that enables

software engineers to analyze and design the logic flow for developing software systems. It shows the pictorial representation

http://www.edusj.mosuljournals.com/
mailto:marwa_marwan21@uomosul.edu.iq
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-0981-277X

 EDUSJ, Vol, 33, No: 1, 2024 (90-98)

91

of the interaction of objects with lifelines which provides valuable information for the development of software systems and

mainly focuses on defining the interaction of objects within a software system. In general, time SD is used in the design phase

and is sometimes used in the analysis phase based on the amount of information it contains to describe the temporal

interaction between the components of the system [7]. So, SDs are a category of behavioral diagrams within the UML,

designed to depict the exchanges and communication between components or objects in a software system. They serve the

purpose of illustrating the dynamic operations of a system, particularly the sequence of events or activities that transpire

chronologically. [8].

 Here are the key components and concepts associated with SD [9]:

a) Objects (Lifelines): Objects or actors in the system are represented as vertical lines called lifelines. Each lifeline

represents an entity or component involved in the sequence of interactions.

b) Messages: Messages are depicted as horizontal arrows or lines, serving to indicate the communication or interaction

between lifelines. They symbolize the transfer of control or data between objects, showcasing the flow of information

between different components. There are several types of messages in sequence diagrams, including:

1. Synchronous Messages: These represent method calls or operations that block the sender until a response is received.

2. Asynchronous Messages: These indicate messages that do not block the sender. The sender continues its execution

without waiting for a response.

3. Return Messages: Used to show the return values or responses from an operation.

4. Self-Message: Represents a message sent from an object to itself.

c) Activation Bar (Execution Occurrence): Activation bars are used to show the period during which an object is actively

processing or executing an operation. They help visualize the relative timing of messages and the duration of an object's

activity.

d) Constraints and Conditions: Sequence diagrams may include constraints or conditions that describe the circumstances

under which certain interactions occur. These can be represented using guard conditions or annotations.

e) Optional and Loop Fragments: Sequence diagrams can include fragments like alternative (if-else) and loop constructs to

represent different scenarios and repetitions of interactions.

f) Focus of Control: Indicates which object or lifeline has control or is actively executing code at a given point in the

sequence.

 In total, SDs are an essential tool for modeling and analyzing the dynamic aspects of a software system or any system

with interactive behavior. SDs are valuable for various purposes in software development, including: Depicting the flow of

messages between different objects, having easy maintenance, being easy to generate, and It can be easily updated according

to new changes in the system [10].

 The term quality has become common and mandatory concerning software construction, especially the quality of the

design phase in the software development life cycle. To evaluate software quality in the early stages of development life,

metrics specific to the SD are used, where important information is extracted from the diagram, a table is formed that includes

all this information, and then the metrics for the diagram are calculated [11].

This paper aims to build an automatic tool that extracts information from the SDs, creates a table that includes this

information, and then calculates size, complexity, and level of detail metrics to give quantitative values that indicate software

quality, which can be used in the future to estimate the schedule, effort, cost, and other resources in the software development

process.

 The rest of this paper is organized as follows: Section 2 is a review of some previous studies that used an SD for

calculating software metrics. Then in Section 3, the research methodology is explained. A case study is adopted to explain the

practical aspect of this work with a tabulation of the results obtained located in section 4. Finally, some conclusions and future

work are explained in section 5.

2. Literature Review

 The SD is one of the most important UML diagrams as it reflects the dynamic behavior of the system and through it,

many attributes of the system can be measured in the early stages of analysis or design.

 The following is a review of some previous studies that used SD as an input for multiple software metrics:

 Singh [11] proposed an efficient method to calculate software metrics with the help of (SDMetrics) as a tool. This

approach is implemented to evaluate the internal standards of diagram attributes and functions after analyzing the (XMI)

format generated by the compiler. Cohesion and coupling metrics are calculated easily and effectively with less effort to

improve the quality of the software to be developed in the design phase.

 In [12] the researchers presented a tool to measure the functional size of COSMIC, which is an abbreviation for

Common Software Measurement International Consortium. It provides a unified method for measuring the functional size of a

 EDUSJ, Vol, 33, No: 1, 2024 (90-98)

92

program using UML diagrams, especially sequence diagrams. to evaluate the tool. Two case studies were conducted and the

results were compared with traditional methods so that this method outperforms others in these areas.

 The SD was used by AbuHassan and Alshayeb [13] to provide a set of software stability metrics that ensure that the

software content does not change even after the maintenance process. Measurement was done at message level and function

level and the proposed set of metrics was validated theoretically and empirically.

 Karim et al. [14] aimed to automatically measure the size of software from both a functional and structural

perspective. The functional size is measured using the common software measurement international consortium (COSMIC)

method, while the structural size is calculated based on the control structure of the SD. To automate the scaling process, the

(XML) structure of the SD is parsed to fit the existing functional and structural equation.

 In [15] Hakim et al. introduced a well-defined approach for evaluating the specific aspect of "authenticity," utilizing

structural and functional volume metrics via SD. This amalgamation can aid in recognizing potential credibility risks during

the design phase.

 In terms of similarity, Triandini et al. [16] Introduced a technique for gauging the resemblance between two SDs to

assess the degree of replication between them. This method comprises two elements of SDs, namely, class properties and

message sequences. Experimental findings demonstrated that the class feature and message sequence can serve as effective

parameters for evaluating sequence similarity.

 As for the issue of consistency, Matsumoto et al. [17] proposed an automatic method that verified the consistency

between sequence diagrams and state machine diagrams with a structure of hierarchy type by checking traces inclusion of

processes. They showed a case study in which a wireless sensor network was represented as a sequence diagram and then

translated the descriptive interactions into a Communicating Sequential Processes)CSPM(description. The (CSPM)

description can be analyzed by using the Failures-Divergences Refinement model (FDR) checker which in this study supports

six types of combined fragments and shows that the hierarchical behavior of the sequence diagram could be correctly

represented.

 Haga et al. [18] presented the structure-behavior coalescence sequence diagrams (SBC-SqD) method for the formal

specification of UML 2.0 sequence diagrams. This method covers two perspectives, first, the syntax aspect allows the

sequence diagram hierarchy to be represented as a parse tree. Second, the semantic aspects are concerned with the

representation of that sequence diagram as a message-sending /receiving event transition graph (MSRETG) which is

considered a labeled transition system (LTS) for the diagram. (MSRETG) showed preceding over previous specifications

because it is a complete, compact, and readable specification.

 For the security issue, Alshayeb et al. [19] investigated the issue of security in a sequence diagram as a behavioral

model through the application of the model refactoring concept. The genetic algorithm was adopted to detect security bad

smells, while the model transformation approach was followed for the correction process. For the validation of the proposed

approaches, many experiments were accomplished by different case studies modeled in sequence diagrams. The results of the

proposed methods show significant detection in 75% of the examined sequence diagrams and effective correction reached

95% of the security bad smells in the investigated sequence diagrams.

3. Research Method

 In the realm of software science and development, a software benchmark serves as an assessment of the extent to

which a software system or process exhibits specific desirable attributes. Given the significance of quantitative measurements

in all scientific fields, there exists a continuous endeavor among computer science professionals and theorists to introduce

analogous methodologies into software development. The aim is to attain objective, replicable, and measurable evaluations,

which can find numerous practical applications in scheduling and budgeting, cost estimation, quality assurance, testing,

software debugging, software performance enhancement, and various other domains. [20].

 Software metrics can be classified into three types: Project metrics, Process metrics, and Product metrics [21]. These

three categories of software metrics help organizations monitor and improve their software development processes, make

informed decisions, manage risks, and ultimately deliver high-quality software products on time and within budget. The

specific metrics used may vary depending on the project's goals, methodologies, and the nature of the software being

developed [22].

 product metrics are essential for assessing the quality of a software product, making informed decisions about release

readiness, prioritizing maintenance and improvement efforts, and ensuring that the software meets user expectations and

requirements. The selection of relevant product metrics depends on the specific goals, context, and characteristics of the

software project [23].

 The SD has metrics that handle its components of messages, objects, lifelines, and other details of the diagram. It can

be said that the main types under which SD metrics fall are metrics of size, degree of complexity, and metrics of internal

details of the diagram which are measured in high-level and low-level messages and object details [24]. Using the design

 EDUSJ, Vol, 33, No: 1, 2024 (90-98)

93

metrics of the diagram, these metrics are calculated simply and optimally with minimal effort, which increases the quality of

the software to be developed.

 Many metrics fall within the SD metrics, but in general, they will be divided into three main categories: Size,

complexity, and level of detail.

1- Metrics are listed under the Size category [25].

• Weighted Number of Lifelines (NoL): The total number of lifelines present in the system.

• No. of Combined Fragments (NoFrag): The total number of fragments integrated into the diagram, regardless of their

type.

• No. of Operands (NoOp): The operands vary depending on the type of integrated parts, and regardless of the

different types, the operands of each integrated part present in the diagram are calculated, which indicates the path of

implementation selection according to the value of the operand .

𝑁𝑜𝑂𝑝 = ∑ ∑ 𝑜𝑝𝑟𝑒𝑎𝑛𝑑
𝑁𝑜𝐹𝑟𝑎𝑔
1 (1)

Where:

Operand: single operand for a single fragment in the diagram.

𝑁𝑜𝐹𝑟𝑎𝑔: total no. of fragments.

• Height (H): For each interacting object in the system, the number of sent, received, and self-messages interacting

directly with the object is calculated, then the highest value is chosen to be the height scale, and that object is

considered the most responsible in the system.

𝐻 = 𝑀𝐴𝑋[∀𝑜𝑏𝑗𝑒𝑐𝑡(∑ 𝑀𝑖𝐿 + ∑ 𝑀𝑜𝐿 + ∑ 𝑆𝑒𝑙𝑓𝑀)] (2)

Where:

MiL: the no. of messages received by one lifeline.

MoL: The number of messages sent to one lifeline.

SelfM: self-message for one object.

2- Metrics are listed under the complexity category [26].

• Messages (NoM): The total number of messages of all types (sent, received, and self) present in the diagram.

• Self-messages (𝑁𝑂𝑠𝑒𝑙𝑓𝑚): The total count of messages that objects in the interaction transmit to themselves. The

large number of self-messages indicates the design of internal algorithms executed on the specified object.

• Total complexity (C): The complexity is primarily ascertained by the multiplication of the message to the lifeline

(MIL) with the message of the lifeline (MOL), resulting in numerous information pathways within a component.

Subsequently, this outcome is squared and further multiplied by the number of lifelines (NOL) to compute the overall

system complexity.

C=∑ 𝑁𝑜𝐿 ∗ (𝑀𝑖𝐿 ∗ 𝑀𝑜𝐿)2𝑛
1 (3)

Where:

𝑁𝑜𝐿: Weighted Number of Lifelines

𝑀𝑖𝐿: incoming messages to the lifeline.

𝑀𝑜𝐿: outgoing messages from the lifeline.

3- Metrics are listed under the level of detail category [27] [28].

3.1 low level of detail:

• Non-Anonymous Object Ratio (SDNAOR): This metric quantifies the proportion of objects in a diagram that are

assigned names in comparison to the overall number of objects.

• Non-Dummy Object Ratio (SDNDOR): This metric evaluates the proportion of objects that align with a represented

class in contrast to the total count of objects within a diagram.

• Non-Dummy Message Ratio (SDNDMR): This metric computes the ratio of messages that correspond to a modeled

class method in comparison to the total number of messages within a diagram.

• Return Message With Label Ratio (SDRMLR): This metric evaluates the proportion of labeled return messages in

relation to the total number of return messages depicted within a diagram.

• Message With Parameter Ratio (SDMPR): This metric quantifies the proportion of messages with specified parameters

concerning the total number of messages within a diagram.

 3.2 High level of detail:

• Sequence Diagram Object Detailedness (SDobj): non-anonymous object ratio and non-dummy object ratio are summed

to give a quantitative measure of the amount of detail of the objects in the system.

 EDUSJ, Vol, 33, No: 1, 2024 (90-98)

94

𝑆𝐷𝑜𝑏𝑗 = 𝑆𝐷𝑁𝐴𝑂𝑅 + 𝑆𝐷𝑁𝐷𝑂𝑅 (4)

• Sequence Diagram Message Detailedness(SDmsg): This metric integrates the ratios of non-dummy messages, labeled

return messages, and messages with parameters to provide a quantitative assessment of the level of message detail

within the system.

𝑆𝐷𝑚𝑠𝑔 = 𝑆𝐷𝑁𝐷𝑀𝑅 + 𝑆𝐷𝑅𝑀𝐿𝑅 + 𝑆𝐷𝑀𝑃𝑅 (5)

• Sequence Diagram level of detail (SDLoD(: From eq. (4 and 5), the level of detail for SD is as follows:

𝑆𝐷𝐿𝑜𝐷 = 𝑆𝐷𝑚𝑠𝑔 + 𝑆𝐷𝑜𝑏𝑗 (6)

Figure 1 represents the overall architecture of the tool that is used in the assessment of the design metrics of SD.

Figure 1. The tool architecture of the design metrics of (SD)

 First, the SD is created using Enterprise Architect v 12.1 and exported the (XMI) file with type 2.1 for the diagram.

Then, this (XMI) file is considered as an input for the tool to parse it using Python 3.11 with Visual Studio Code (VSCode) as

an IDE to generate a table of information for all aspects of the diagram like messages, lifelines, fragments, etc. lastly,

depending on the constructed information table, calculating SD metrics represented in this section.

4. Results and Discussion

 To test the designed tool, the hotel reservation system was chosen. For this system, two versions of the SD were

drawn. Although there are differences between the two versions that may be minor and unnoticed, they are important and

affect the quality of the design, and this is what this tool provides in terms of accurate measurement of quality standards. The

purpose of comparing two versions of the SD for the same system is the presence of these minor changes whose impact on the

quality of the design is not known. The proposed tool provides quantitative measures for these changes. They either increase

or decrease the value of the diagram metrics, or have almost no significant effect. Figure 2 represents SD version 1 for the

hotel reservation system, while Figure 3 represents SD version 2 for the aforementioned system, and Table 1 shows the values

of SD metrics after the tool execution.

Table 1: Represent the results of metrics execution values.

Metric category Metric name Value for SD1 Value for SD2

size Weighted Number of Lifelines (NoL) 5 5

No. of Combined Fragments (NoFrag) 2 1 ↓

No. of Operands (NoOp) 2 1 ↓

Height (H) 9 10 ↑

complexity Messages (NoM) 11 12 ↑

Self-messages (𝑁𝑂𝑠𝑒𝑙𝑓𝑚) 1 1

Total complexity (C) 2130 2395 ↑

Low LoD Non-Anonymous Object Ratio (SDNAOR) 0.80 0.80

Non-Dummy Object Ratio (SDNDOR) 1 1

Non- Dummy Message Ratio (SDNDMR) 1 1

 EDUSJ, Vol, 33, No: 1, 2024 (90-98)

95

Return Message With Label Ratio (SDRMLR) 0.50 0.66 ↑

Message With Parameter Ratio (SDMPR) 0.09 0.16 ↑

High LoD Sequence Diagram Object Detailedness (SDobj) 1.8 1.8

Sequence Diagram Message Detailedness (SDmsg) 1.59 1.83 ↑

Sequence Diagram level of detail (SDLoD) 3.39 3.63 ↑

 Table 1 shows the values of the metrics provided by the tool after implementing it on the SD in both versions. The

results show an increase in the values of some metrics and a decrease in other metrics. For example, in SD2, the values of No.

of Combined Fragments (NoFrag) and No. of Operands (NoOp) metrics were decreased, while the value of Height (H)

metrics increased and was not affected by this change because this metric only depends on messages of different types, as the

height value for the SD 1 is equal to 9 (max value from 5,9,4,2,1) and the height value for the SD2 is equal to 10 (max value

from 4,10,5,2,2). Moreover, SD2 witnesses an increase in values over the SD1 in Messages (NoM), Total complexity (C),

Return Message With Label Ratio (SDRMLR), Message With Parameter Ratio (SDMPR), Sequence Diagram Message

Detailedness (SDmsg), and Sequence Diagram Level of detail (SDLoD). This indicates that the SD2 is larger in height, more

complex, and more detailed than The SD1.

Figure 2: SD1 version 1 for hotel reservation system.

 EDUSJ, Vol, 33, No: 1, 2024 (90-98)

96

Figure 3: SD2 version 2 for hotel reservation system

 This tool is considered comprehensive for all metrics of a sequence diagram, showing a quantitative value for each

measure, regardless of how insignificant the unobserved changes are, as it measures metrics on three levels: size and

complexity, in addition to the degree of internal detail of the diagram. It should be noted that the Non-Dummy Object Ratio

(SDNDOR) and No-Dummy Message Ratio (SDNDMR) metrics are a measure of the number of objects and messages that

have a counterpart in the class diagram, and since this research does not address the class diagram, this value was imposed

equal to one, that is, given that All objects and messages have a corresponding counterpart.

5. Conclusion

 This paper proposed a tool that provides many quantitative metrics for the SD. For an accurate comparison, which

cannot be deduced by observation alone, SD version 1 and version 2 were created for the hotel reservation system by the

guest. Then, 15 metrics under three general categories (size, complexity, and level of detail) were automatically calculated by

the tool. As shown in Table 2, SD2 is larger in height, more complex, and more detailed than SD1. It was noted that increasing

or decreasing the values of some metrics affects the degree of complexity, size, and overall internal details, while there is no

significant effect from changing other metrics.

 Starting from this research, many aspects can be expanded and studied more deeply and comprehensively. A

comprehensive study related to the field can be conducted to explain the impact of each metric, whether positive or negative

effect on the overall types of measures such as size, complexity, and others. Furthermore, any new metrics related to the SD

can be added to this tool to be a comprehensive tool for this diagram. Finally, the class diagram can be added to the tool to

measure the Non-Dummy Object Ratio (SDNDOR) and No-Dummy Message Ratio (SDNDMR) metrics because they are

linked to the class and sequence diagrams.

6. Acknowledgments

I express my gratitude to the University of Mosul for their invaluable support and facilitation in the completion of this work.

Additionally, I extend my thanks to the Department of Software for their unwavering assistance throughout the research

process.

 EDUSJ, Vol, 33, No: 1, 2024 (90-98)

97

References

[1] H. Meziane and N. Ouerdi, “A Study of Modelling IoT Security Systems with Unified Modelling Language UML”

International Journal of Advanced Computer Science and Applications, vol. 13, no. 11, 2022, doi:

http://dx.doi.org/10.14569/IJACSA.2022.0131130.

[2] D. Hindarto and M. Hariadi, “Information System Design at FGH Stores with Unified Modelling Language”, Journal of

Computer Networks, Architecture and High Performance Computing, vol. 5, no. 2, pp. 623-33, 2023, doi:

http://dx.doi.org/10.47709/cnahpc.v5i2.2702.

[3] D. Anjani, H. Hilaliyah and D. Novianti, “M-Absence: Analysis and Design using Unified Modelling Language UML”,

InJournal of Physics: Conference Series, IOP Publishing, vol. 1539, no. 1, pp. 012040,2020, doi:

http://dx.doi.org/10.1088/1742-6596/1539/1/012040.

[4] M. Ozkaya, “Are the (UML) modelling tools powerful enough for practitioners? A literature review”, IET Software, vol.

13, no. 5, pp. 338-54, 2019 , doi: http://dx.doi.org/10.1049/iet-sen.2018.5409.

[5] B. Bhatt, M. Nandu, “An Overview of Structural UML Diagrams”, 2021.

[6] R. Fauzan, DO. Siahaan, S. Rochimah and E. Triandini, “A novel approach to automated behavioral diagram

assessment using label similarity and subgraph edit distance”, Computer Science,vol. 22, no. 2, pp. 191-207, 2021, doi:

http://dx.doi.org/10.7494/csci.2021.22.2.3868.

[7] C. Alvin, B. Peterson and S. Mukhopadhyay, “Static generation of UML sequence diagrams”, International Journal on

Software Tools for Technology Transfer, vol. 23, no. 1, pp. 31-53, 2021, doi: http://dx.doi.org/10.1007/s10009-019-

00545-z.

[8] TA. Kurniawan, L. Lam-Son and B. Priyambadha, “Challenges in developing sequence diagrams UML”, Journal of

Information Technology and Computer Science, vol. 5, no. 2, pp. 221-34, 2020, doi:

http://dx.doi.org/10.25126/jitecs.202052216.

[9] S. Alhazmi, C. Thevathayan and M. Hamilton, “Learning UML sequence diagrams with a new constructivist

pedagogical tool: SD4ED”, InProceedings of the 52nd ACM Technical Symposium on Computer Science Education,

pp. 893-899, 2021, doi: http://dx.doi.org/10.1145/3408877.3432521.

[10] S. Al-Fedaghi, “UML sequence diagram: an alternative model” arXiv preprint arXiv:2105.15152, 2021, doi:

http://dx.doi.org/10.14569/IJACSA.2021.0120576.

[11] D. Singh, “An Optimizating the Software Metrics for UML Structural and Behaviourl Diagrams using Metrics

Tool”, INFOCOMP Journal of Computer Science,vol. 18, no. 1, pp. 09-19, 2019.

[12] G De Vito, F Ferrucci, and C Gravino, “Design and automation of a COSMIC measurement procedure based on UML

models”, Software and Systems Modeling, vol. 19, no. 1, pp. 171-98, 2020, doi: http://dx.doi.org/10.1007/s10270-019-

00731-2.

[13] A. AbuHassan and M. Alshayeb, “A metrics suite for UML model stability”, Software & Systems Modeling, vol. 18,

no. 1, pp. 557-83, 2019, doi: http://dx.doi.org/10.1007/s10270-016-0573-6.

[14] S. Karim, S. Liawatimena, A. Trisetyarso, BS. Abbas and W. Suparta, “Automating functional and structural software

size measurement based on XML structure of UML sequence diagram”, IEEE International Conference on Cybernetics

and Computational Intelligence (CyberneticsCom), pp. 24-28, 2017, doi:

10.1109/CYBERNETICSCOM.2017.8311709.

[15] H. Hakim, A. Sellami and H. Ben Abddallah, “Analyzing the Risk of Authenticity Violation Based on the Structural

and Functional Sizes of UML Sequence Diagrams”, InRisks and Security of Internet and Systems: 11th International

Conference, CRiSIS 2016, Roscoff, France, September 5-7, 2016, pp. 46-59, Revised Selected Papers 11, Springer

International Publishing, 2017, doi: http://dx.doi.org/10.1007/978-3-319-54876-0_4.

[16] E. Triandini, R. Fauzan, DO. Siahaan, S. Rochimah, “Sequence diagram similarity measurement: a different approach”,

In2019 16th International Joint Conference on Computer Science and Software Engineering (JCSSE), pp. 348-351,

2019, doi: http://dx.doi.org/10.1109/JCSSE.2019.8864207.

[17] A. Matsumoto, T. Yokogawa, S. Amasaki, H. Aman and K. Arimoto, “Synthesis and Consistency Verification of UML

Sequence Diagrams with Hierarchical Structure”, Information Engineering Express, vol. 6, no. 2, pp. 1-9, 2020, doi:

https://doi.org/10.52731/iee.v6.i2.529.

[18] S. Haga, WM. Ma and WS. Chao, “Structure-Behavior Coalescence Method for Formal Specification of UML 2.0

Sequence Diagrams”, J. Comput. Sci. Eng., vol. 15, no. 4, pp. 148-59, 2021, doi:

http://dx.doi.org/10.5626/JCSE.2021.15.4.148.

[19] M. Alshayeb, H. Mumtaz, S. Mahmood and M. Niazi, “Improving the security of UML sequence diagram using genetic

algorithm”, IEEE Access, vol. 8, pp. 62738-62761, 2020, doi: http://dx.doi.org/10.1109/ACCESS.2020.2981742.

http://dx.doi.org/10.14569/IJACSA.2022.0131130
http://dx.doi.org/10.47709/cnahpc.v5i2.2702
http://dx.doi.org/10.1088/1742-6596/1539/1/012040
http://dx.doi.org/10.1049/iet-sen.2018.5409
http://dx.doi.org/10.7494/csci.2021.22.2.3868
http://dx.doi.org/10.1007/s10009-019-00545-z
http://dx.doi.org/10.1007/s10009-019-00545-z
http://dx.doi.org/10.25126/jitecs.202052216
http://dx.doi.org/10.1145/3408877.3432521
http://dx.doi.org/10.14569/IJACSA.2021.0120576
http://dx.doi.org/10.1007/s10270-019-00731-2
http://dx.doi.org/10.1007/s10270-019-00731-2
http://dx.doi.org/10.1007/s10270-016-0573-6
https://doi.org/10.1109/CYBERNETICSCOM.2017.8311709
http://dx.doi.org/10.1007/978-3-319-54876-0_4
http://dx.doi.org/10.1109/JCSSE.2019.8864207
https://doi.org/10.52731/iee.v6.i2.529
http://dx.doi.org/10.5626/JCSE.2021.15.4.148
http://dx.doi.org/10.1109/ACCESS.2020.2981742

 EDUSJ, Vol, 33, No: 1, 2024 (90-98)

98

[20] MK. Thota, FH. Shajin and P. Rajesh, “Survey on software defect prediction techniques”, International Journal of

Applied Science and Engineering, vol. 17, no. 4, pp. 331-344, 2020, doi:

https://doi.org/10.6703/IJASE.202012_17(4).331.

[21] L. Qiao, X. Li, Q. Umer and P. Guo, “Deep learning based software defect prediction”, Neurocomputing, vol. 385, pp.

100-110, 2020, doi: http://dx.doi.org/10.1016/j.neucom.2019.11.067.

[22] H. Kerzner, “Project management metrics, KPIs, and dashboards: a guide to measuring and monitoring project

performance”, John Wiley & Sons, 2022, doi: http://dx.doi.org/10.1002/9781119851592.

[23] M. Staron, “Action research in software engineering”, Springer International Publishing, 2020, doi:

http://dx.doi.org/10.1007/978-3-030-32610-4.

[24] H. Simanca and B. Garrido, “Storage System for Software Quality Metrics Associated with UML Diagrams”, Journal

of Positive School Psychology, vol. 6, no. 4, pp. 9126-9132, 2022.

[25] D. Singh and H. Sidhu, “Optimal pursuit of UML metrics for structural and behavioral diagrams of UML using metrics

tool and program slicing techniques”, International Journal of Innovations & Advancement in Computer Science

(IJIACS), vol. 7, no. 5, pp. 101-105, 2018.

[26] NK. Maina, GM. Muketha and GM. Wambugu, “A New Complexity Metric for UML Sequence Diagrams”,

International Journal of Software Engineering & Applications, vol. 14, no. 1, 2023, doi:

http://dx.doi.org/10.5121/ijsea.2023.14102.

[27] AM Fernández-Sáez, M Genero, D Caivano, and MR Chaudron, “Does the level of detail of UML diagrams affect the

maintainability of source code?: a family of experiments” Empirical Software Engineering, vol. 21, no.1, pp. 212, 2016,

doi: http://dx.doi.org/10.1007/s10664-014-9354-4.

[28] H Simanca and B Garrido, “Storage System for Software Quality Metrics Associated with UML Diagrams”, Journal of

Positive School Psychology, vol. 6, no. 4, pp. 9126-32, 2022, http://journalppw.com.

 لمقاييس الكمية للغة النمذجة الموحدة بناءً على النموذج السلوكيا

 1مروة مروان عبد العزيز دبدوب

 1قسم البرمجيات، كلية علوم الحاسوب والرياضيات، جامعة الموصل، موصل، العراق.

 المستخلص:
مرحلة أثناء للنظام وتصورًا شاملاً وصفًا وتعطي النظام مكونات بين التفاعل الموحدة النمذجة لغة في السلوكية المخططات تعكس

الذي يصف التسلسل الزمني للأحداث بين مكونات النظام. تستغرق الزمني التصميم. ومن أهم المخططات السلوكية هو مخطط التسلسل

المعلومات والمقاييس من هذا المخطط أداة خاصة لمساعدة المطورين في الحصول على عملية استخراج لذا أصبح إنشاء وقتاً طويلاً،

ج المعلومات من مخطط التسلسل الزمني أمرًا ضروريًا بسبب المزايا الكبيرة والسهولة التي توفرها. تهدف هذه الورقة إلى بناء أداة تستخر

المعلومات من المخطط وإنشاء جدول يتضمن هذه المعلومات، ومن ثم حساب ثلاث فئات من المقاييس المتعلقة بهذا النوع من المخططات

مقياسًا لإعطاء قيم كمية تشير إلى جودة البرامج المستخدمة لتقدير الجدول 15وهي الحجم والتعقيد ومستوى التفاصيل. تتضمن هذه الفئات

 الزمني والتكلفة والجهد والموارد الأخرى في عملية تطوير البرامج. كدراسة حالة تم اعتماد وبناء نظام حجز الفنادق بنسختين من المخطط
 لأغراض المقارنة. أظهرت النتائج قياسًا كمياً للاختلافات الصغيرة وغير الملحوظة بين المخططين.

https://doi.org/10.6703/IJASE.202012_17(4).331
http://dx.doi.org/10.1016/j.neucom.2019.11.067
http://dx.doi.org/10.1002/9781119851592
http://dx.doi.org/10.1007/978-3-030-32610-4
http://dx.doi.org/10.5121/ijsea.2023.14102
http://dx.doi.org/10.1007/s10664-014-9354-4

