Hosoya Polynomials of Steiner Distance of an m-Cube and the Square of a Path

Ali Aziz Ali
Dept. of Mathematics, College of Computer Sciences and Mathematics, Mosul University.

Herish Omer Abdullah
Dept. of Mathematics, College of Sciences, University of Salahaddin.

ABSTRACT

The Hosoya polynomials of Steiner 3-distance of hypercube graphs Q_m, and of the square of a path, P_t^2, are obtained in this paper. The Steiner n-diameters of Q_m and P_t^2 are also obtained.

1. Introduction.

We follow the terminology of [2,3]. For a connected graph $G = (V, E)$ of order p, the Steiner distance[4,5] of a non-empty subset $S \subseteq V(G)$, denoted by $d_G(S)$, or simply $d(S)$, is defined to be the size of the smallest connected subgraph $T(S)$ of G that contains S; $T(S)$ is called a Steiner tree of S. If $|S|=2$, then $d(S)$ is the distance between the two vertices of S. For $2 \leq n \leq p$ and $|S|=n$, the Steiner distance of S is called Steiner n-distance of S in G. The Steiner n-diameter of G (or the diameter of the Steiner n-distance), denoted by $diam_n^*G$ or $\delta_n^*(G)$, is defined as follows:

$$diam_n^*G = \max\{d_G(S) : S \subseteq V(G), |S| = n\}.$$

Remark 1.1. It is clear that

- (1) If $n \geq m$, then $diam_n^*G \geq diam_m^*G$.
- (2) If $S' \subseteq S$, then $d_G(S') \leq d_G(S)$.

The Steiner n-distance of a vertex $v \in V(G)$, denoted by $W_n^*(v,G)$, is the sum of the Steiner n-distances of all n-subsets containing v. The sum of Steiner n-distances of all n-subsets of $V(G)$ is denoted by $d_n(G)$ or $W_n^*(G)$. It is clear that
The graph invariant $W_n^*(G)$ is called Wiener index of the Steiner n-distance of the graph G.

Definition 1.2 Let $C_n^*(G,k)$ be the number of n-subsets of distinct vertices of G with Steiner n-distance k. The graph polynomial defined by

$$H_n^*(G;x) = \sum_{k=n-1}^{\delta_n^*} C_n^*(G,k)x^k,$$

where δ_n^* is the Steiner n-diameter of G; is called the Hosoya polynomial of Steiner n-distance of G.

It is clear that

$$W_n^*(G) = \sum_{k=n-1}^{\delta_n^*} kC_n^*(G,k)$$

For $1 \leq n \leq p$, let $C_n^*(u,G,k)$ be the number of n-subsets S of distinct vertices of G containing u with Steiner n-distance k. It is clear that

$$C_1^*(u,G,0) = 1.$$ Define

$$H_n^*(u,G;x) = \sum_{k=n-1}^{\delta_n^*} C_n^*(u,G,k)x^k.$$ Obviously, for $2 \leq n \leq p$

$$H_n^*(G;x) = \frac{1}{n} \sum_{u \in V(G)} H_n^*(u,G;x).$$

Ali and Saeed \([1]\) were first whom studied this distance-based polynomial for Steiner n-distances, and established Hosoya polynomials of Steiner n-distance for some special graphs and graphs having some kind of regularity, and for Gutman’s compound graphs $G_1 \ast G_2$ and $G_1 : G_2$ in terms of Hosoya polynomials of G_1 and G_2.

In this paper, we obtain the Hosoya polynomial of Steiner 3-distance of Q_m and P_t^2. Moreover, $diam_n^*Q_m$ and $diam_n^*P_t^2$ are determined.

2. **Hypercube Graphs** (m-Cube Q_m)

The Cartesian product \([3]\) of two connected disjoint graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is the graph denoted by $G_1 \times G_2$ with
vertex set \(V \times V \) in which \((x_1, y_1)\) is joined to \((x_2, y_2)\) whenever \(\{x_1, x_2 \in E_1 \text{ and } y_1 = y_2\} \) or \(\{y_1, y_2 \in E_2 \text{ and } x_1 = x_2\} \).

If \(G_1 \) is a \((p_1, q_1)\)-graph and \(G_2 \) is a \((p_2, q_2)\)-graph, then \(G_1 \times G_2 \) is a \((p_1p_2, p_1q_2 + p_2q_1)\)-graph.

Now, the graph \(m\)-cube \(Q_m \) is defined recursively \([3]\) by \(Q_1 = K_2 \) and \(Q_m = Q_{m-1} \times K_2 \) for \(m \geq 2 \). Thus \(Q_m \) has \(2^m \) vertices which may be labeled by the binary \(m\)-tuples \((s_1, s_2, \ldots, s_m)\) where each \(s_i \) is 0 or 1, for \(1 \leq i \leq m \). Two vertices of \(Q_m \) are adjacent if their binary representations differ at exactly one place.

The diameter of \(Q_m \) is \(m[7] \), and \(Q_m \) is \(m\)-regular graph.

We next describe the Steiner \(n\)-diameter of the \(m\)-cube \(Q_m \).

Proposition 2.1. For \(m \geq 2 \) and \(n \geq 2^m - m + 1 \),
\[
\text{diam}_n^* Q_m = n - 1
\]

Proof. Since \(Q_m \) is \(m\)-connected \([3]\), so the removal of any \((m-1)\)-subset of vertices produces a connected subgraph of order \(2^m - m + 1 \).
That is for any subset \(S \) of order \(n \geq 2^m - m + 1 \), the induced subgraph \(\langle S \rangle \) is connected, which implies that
\[
d(S) = n - 1
\]
This completes the proof. ■

Proposition 2.2. For \(m \geq 2 \) and \(2 \leq n \leq 2^m - m \),
\[
\text{diam}_n^* Q_m \geq n
\]

Proof. We assume the contrary, that is we let \(\text{diam}_n^* Q_m < n \), then for any \(n\)-subset \(S \) of vertices of \(Q_m \), \(d(S) = n - 1 \). This means that the removal of any \(V - S \) subset of vertices produces a connected subgraph of \(Q_m \).
Thus, \(Q_m \) is \((|V - S| + 1)\)-connected.
But \(|V - S| + 1 \geq 2^m - (2^m - m) + 1 = m + 1 \)
Contradicting the fact that \(Q_m \) is \(m\)-connected, so, we must have
\[
\text{diam}_n^* Q_m \geq n.
\]
Proposition 2.2 states that for \(2 \leq n \leq 2^m - (m - 1) \), \(n \) is a lower bound for \(\text{diam}_n^* Q_m \). We can improve this bound in the next proposition.

Proposition 2.3. For \(2 \leq n \leq 2^m - m \)
\[
\text{diam}_n^* Q_m \geq \max\{m, n\}
\]

Proof. It is clear that, this is true for \(m = 2 \) and \(m = 3 \).
It is known that \(\text{diam}_2^* Q_m = m \), and \(\max\{m, 2\} = m \geq 2 \),
So it is also true for \(n=2 \).

(a) If \(\max\{m,n\} = m \), that is \(m \geq n \), and if \(S \) contains \(u_0 = (0,0,\ldots,0) \) and \(u_m = (1,1,\ldots,1) \), then \(d(u_0,u_m) = m \) and \(d(S) \geq m \).

Therefore \(\text{diam}^*_n Q_m \geq m \).

(b) If \(\max\{m,n\} = n \), then by Proposition 2.2, \(\text{diam}^*_n Q_m \geq n \).

So, \(\text{diam}^*_n Q_m \geq \max\{m,n\} \) for \(2 \leq n \leq 2^m - m \).

In the case of \(n=3 \), we have the following result.

Proposition 2.4. For \(m \geq 3 \)

\[\text{diam}^*_3 Q_m = m . \]

Proof. The proof is by induction on \(m \).

It is clear that \(\text{diam}^*_3 Q_3 = 3 \), thus assume \(m \geq 3 \). Suppose that the result is true for \(m = k \geq 3 \), and consider \(m = k + 1 \).

Let \(S = \{u_1,u_2,u_3\} \) be any 3-subset of vertices of \(V(Q_{k+1}) \).

We know that

\[Q_{k+1} = Q_k \times K_2. \]

If \(S \subseteq V(Q_k) \) or \(V(Q'_k) \), then by induction hypothesis \(d(S) \leq k \), where \(Q'_k \) is the second copy of \(Q_k \). (See Fig. 2.1).

![Fig. 2.1.](image)

Now, let \(u_1,u_2 \in V(Q_k) \) and \(u_3 \in V(Q'_k) \), and let \(u'_3 \) be a vertex in \(V(Q_k) \) adjacent to \(u_3 \) (see Fig.2.1), then

\[d(\{u_1,u_2,u'_3\}) \leq k \]

Thus,

\[\text{diam}^*_3 Q_{k+1} \leq k + 1 = m \]

By Proposition 2.3, \(\text{diam}^*_3 Q_m \geq m \), because \(2 < 2^m - m \) for \(m \geq 3 \).

Thus,

\[\text{diam}^*_3 Q_m = m . \]
We next investigate the Hosoya polynomial of Steiner 3-distance of \(Q_m \), which is obtained as a reduction formula in the following theorem.

Theorem 2.5. For \(m \geq 3 \),

\[
H_3^*(Q_m; x) = (2 + 6x)H_3^*(Q_{m-1}; x) + 4xH_2^*(Q_{m-1}; x),
\]

where

\[
H_2^*(Q_{m-1}; x) = 2^{m-2}(1 + x)^{m-1} - 2^{m-2}.
\]

Proof. Let \(S \) be a 3-subset of vertices of \(V(Q_m) \), and consider

\[
Q_m = Q_{m-1} \times K_2,
\]

assuming that \(Q_{m-1} \) and \(Q'_{m-1} \) are the two copies of the \((m-1)\)-cube in \(Q_m \).

We consider three cases for \(d_{Q_m} (S) \).

Case I. If \(S \subseteq V(Q_{m-1}) \) or \(V(Q'_{m-1}) \), then

\[
d_{Q_m} (S) = d_{Q_{m-1}} (S) = d_{Q'_{m-1}} (S).
\]

The Hosoya polynomial corresponding to all such \(S \) of this case is

\[
F_1(x) = 2H_3^*(Q_{m-1}; x).
\]

Case II. Let \(u,v,w \) be any 3 vertices of \(V(Q_{m-1}) \) and \(u',v',w' \) are the vertices of \(V(Q'_{m-1}) \) adjacent respectively to \(u,v,w \) as shown in Fig. 2.1 for \(k = m-1 \).

If \(S = \{u,v,w\}, \{u,v',w\}\{u',v,w\}, \{u',v',w\}\{u',v',w'\}\{u,v',w'\} \) or \(\{u,v',w'\} \) then

\[
d_{Q_m} (S) = 1 + d_{Q_{m-1}} (\{u,v,w\}).
\]

Thus, the Hosoya polynomial for all such six possibilities of \(S \) is

\[
F_2(x) = 6xH_3^*(Q_{m-1}; x)
\]

Case III. If \(S = \{u,u',v\}, \{u,u',w\}, \{u,u',v'\}, \{u,u',w'\}, \{u,u',v\} \) or \(\{u,u',w'\} \) then

\[
d_{Q_m} (S) = 1 + d_{Q_{m-1}} (S') = 1 + d_{Q_{m-1}} (S''),
\]

where

\[
S' = \{u,v\} \text{ or } \{u,w\} \text{ and } S'' = \{u',v'\} \text{ or } \{u',w'\} \text{ and } d_{Q_{m-1}} (S') \text{ and } d_{Q_{m-1}} (S'') \text{ denotes the ordinary distances of } S' \text{ and } S'' \text{ in } Q_{m-1} \text{ and } Q'_{m-1}, \text{ respectively}.
\]

Thus, the Hosoya polynomial for all such possibilities of \(S \) in this case is

\[
F_3(x) = 4xH_2^*(Q_{m-1}; x).
\]

Now, adding the polynomials \(F_1(x), F_2(x) \) and \(F_3(x) \) we obtain the required reduction formula.

Returning to the reduction formula obtained in Theorem 2.5, we find that \(H_3^*(Q_m; x) \) can be simplified as shown in the next corollary.
Corollary 2.6. For \(m \geq 3 \)
\[
H_3^*(Q_m; x) = 4x^2(2 + 6x)^{m-2} + 4x \sum_{k=1}^{m-2} (2 + 6x)^{k-1} H_2^*(Q_{m-k}; x)
\]

Proof. We know that
\[
H_3^*(Q_m; x) = (2 + 6x)H_3^*(Q_{m-1}; x) + 4xH_2^*(Q_{m-1}; x)
\]
\[
= (2 + 6x)[(2 + 6x)H_3^*(Q_{m-2}; x) + 4xH_2^*(Q_{m-2}; x)] + 4xH_2^*(Q_{m-1}; x)
\]
\[
= (2 + 6x)^2 H_3^*(Q_{m-2}; x) + 4x[(2 + 6x)H_2^*(Q_{m-2}; x) + H_2^*(Q_{m-1}; x)]
\]
\[
= (2 + 6x)^{m-2} H_3^*(Q_2; x) + 4x[(2 + 6x)^{m-3} H_2(Q_{m-(m-2)}; x) + ... + (2 + 6x)^{m-4} H_2(Q_{m-(m-3)}; x) + H_2(Q_{m-1}; x)]
\]
It is obvious that \(H_3(Q_2; x) = 4x^2 \)
Hence
\[
H_3^*(Q_m; x) = 4x^2(2 + 6x)^{m-2} + 4x \sum_{r=2}^{m-1} (2 + 6x)^{m-1-r} H_2(Q_r; x).
\]

Next corollary computes the Wiener index of Steiner 3-distance of \(Q_m \).

Corollary 2.7. For \(m \geq 3 \)
\[
W_3^*(Q_m) = 8^{m-2}(3m + 2) + 2^{m-4} \sum_{k=1}^{m-2} 4^k \{2^{m-k+1}(m - k) + (2^{m-k} - 1)(3k + 1)\}.
\]

3. The Square of a Path (\(P_t^2 \))

The \(n^{th} \) power \(G^n \) of a connected graph \(G \) has vertex set \(V(G) \) and for each distinct vertices \(u,v \) of \(G^n, uv \in E(G^n) \) whenever
\[
1 \leq d_G(u,v) \leq n.
\]
It is clear that, if \(diamG = n \) then \(G^n \) is a complete graph.

In [7], W. A. M. Saeed proved that
\[
diamG^n = \left\lceil \frac{diamG}{n} \right\rceil.
\]

In this section, we consider the square \(P_t^2 \) of a path \(P_t \), with respect to Steiner distance. First, we find the Steiner \(n \)-diameter.

Proposition 3.1. For even \(t \geq 4 \), and for \(2 \leq n \leq t \), the Steiner \(n \)-diameter of \(P_t^2 \) is
\[
t \geq \frac{t}{2} - 1 + \left\lceil \frac{n}{2} \right\rceil.
\]

Proof. The graph \(P_t^2 \) is shown in Fig.3.1.
Let $P_t = u_1, u_2, \ldots, u_t$, then
\[
V(P_t^2) = V(P_t) = \{u_1, u_2, \ldots, u_t\}.
\]
If S is an n-subset of vertices of $V(P_t^2)$ such that $d(S)$ is maximum, then S must contain the two vertices u_1 and u_t, the other vertices of S must be the first $n-2$ vertices from the sequence (See Fig. 3.1).

Therefore S contains $\left\lfloor \frac{n-2}{2} \right\rfloor$ vertices from one of the sets $A = \{u_2, u_4, \ldots, u_{t-2}\}$, $B = \{u_3, u_5, \ldots, u_{t-1}\}$ and contains $\left\lceil \frac{n-2}{2} \right\rceil$ vertices from the other set. If S contains $\left\lfloor \frac{n-2}{2} \right\rfloor$ vertices from A, then $T(S)$ must contain the $u_1 - u_t$ path $u_1, u_2, u_4, \ldots, u_{t-2}, u_t$, and so S will contain the $\left\lceil \frac{n-2}{2} \right\rceil$ vertices from B, and the size of $T(S)$ will be $\frac{t + \left\lfloor \frac{n-2}{2} \right\rfloor}{2}$. But if S contains $\left\lceil \frac{n-2}{2} \right\rceil$ vertices from B, then $T(S)$ must contain the $u_1 - u_t$ path $u_1, u_3, u_5, \ldots, u_{t-1}, u_t$, and the size of $T(S)$ will also be $\frac{t + \left\lceil \frac{n-2}{2} \right\rceil}{2}$.

Hence, the proof of the proposition.

Proposition 3.2. For odd $t \geq 3$, $2 \leq n \leq t$, the Steiner n-diameter of P_t^2 is $\frac{t-3}{2} + \left\lceil \frac{n}{2} \right\rceil$.

Proof: The proof is similar to that of Proposition 3.1. It is clear that there is exactly one shortest $u_1 - u_t$ path in P_t^2 whose length is $\frac{t-1}{2}$, namely...
The other \((n - 2)\) vertices of the \(n\)-subset \(S\) are the first \(n - 2\) from the sequence \(u_2, u_3, u_4, \ldots, u_{t-1}\). Therefore \(S\) will contain the first \(\left\lceil \frac{n - 2}{2} \right\rceil\) vertices from \(\{u_2, u_4, \ldots, u_{t-1}\}\).

Thus \(S\) of maximum Steiner \(n\)-distance has
\[
d(S) = \frac{t - 1}{2} + \left\lceil \frac{n - 2}{2} \right\rceil = \frac{t - 3}{2} + \left\lceil \frac{n}{2} \right\rceil.
\]

Next, we find Hosoya polynomial of the Steiner \(3\)-distance of the square of a path \(P_t\).

Theorem 3.3. Let \(t = 2s \geq 6\) be an even positive integer, then
\[
H_3^*(P_t^2; x) = H_3^*(P_{t-2}^2; x) + F_s(x)
\]
where
\[
F_s(x) = 2x^2 + 2x^s + \sum_{j=2}^{s-1} [4(x + 1)j - 2x - 2]x^j
\]

Proof. The graph \(P_t^2\) is shown in Fig.3.1; its vertices are relabeled as shown in Fig.3.2 in order to simplify the derivation of \(F_s(x)\).

![Diagram of \(P_t^2\)](image)

Next, we find Hosoya polynomial of the Steiner \(3\)-distance of the square of a path \(P_t\).

Let \(P_{t-2}^2\) be obtained from \(P_t^2\) by deleting the two vertices \(v_s, v'_s\). Then
\[
H_3^*(P_t^2; x) = H_3^*(P_{t-2}^2; x) + F_s(x)
\]
where
\[
F_s(x) = \sum_S x^{d(S)},
\]
in which \(|S| = 3\), \(S \cap \{v_s, v'_s\} \neq \emptyset\) and \(S \cap V(P_{t-2}^2) \neq \emptyset\).

To find \(F_s(x)\) we consider several cases for \(S\).

(1) If \(S = \{v_s, v'_s, w\}\), \(w \in V(P_{t-2}^2)\), then
\[
d(S) = s + 1 - i, \quad \text{when } w = v_i \text{ or } v'_i, \quad 1 \leq i \leq s - 1.
\]
Thus, the polynomial corresponding to all such \(S\)’s of this case is
\[f_1(x) = 2 \sum_{i=1}^{s-1} x^{s+1-i} = 2 \sum_{j=2}^{s} x^j. \]

(2) If \(S = \{v_x, v_i, v_j\}, \ 1 \leq i < j \leq s - 1, \) then
\[d(S) = s - i. \]

It is clear that for each value of \(i \) there are \((s - i - 1)\) values of \(j \). Thus the corresponding polynomial is \(\sum_{i=1}^{s-1} (s - i - 1)x^{s-i} \).

The same polynomial is obtained if \(S = \{u'_s, u'_i, u'_j\} \).

Therefore, for such 3-subsets \(S \) we get
\[f_2(x) = 2 \sum_{i=1}^{s-2} (s - i - 1)x^{s-i} = 2 \sum_{j=2}^{s-1} (j - 1)x^j. \]

(3) If \(S = \{v_x, v_i, v'_j\} \) or \(\{v'_x, v_i, v'_j\} \), then
\[d(S) = s - i + 1, \ 1 \leq i \leq s - 1. \]

Thus, the corresponding polynomial is
\[f_3(S) = 2 \sum_{i=1}^{s-1} x^{s-i+1} = 2 \sum_{j=1}^{s} x^{j+1}. \]

(4) If \(S = \{v_x, v'_i, v'_j\}, \ 1 \leq i < j \leq s - 1, \) then
\[d(S) = s + 1 - i. \]

Similarly, if \(S = \{v_x, v'_i, v_j\}, \ 1 \leq i < j \leq s - 1, \) then
\[d(S) = s - i. \]

Thus, the corresponding polynomial is
\[f_4(x) = \sum_{i=1}^{s-2} (s - i - 1)x^{s+1-i} + \sum_{i=1}^{s-2} (s - i - 1)x^{i-1} = \sum_{j=2}^{s} (j - 1)(x + 1)x^j. \]

(5) If \(S = \{v'_x, v'_i, v'_j\}, \ 1 \leq i < j \leq s - 1, \) then
\[d(S) = s - i + 1, \]
and there are \((s - i - 1)\) values for \(j \).

Similarly, if \(S = \{v'_x, v'_i, v_j\} \) then \(d(S) = s - i + 1 \) for \(1 \leq i < j \leq s - 1 \).

Thus, the polynomial corresponding to all these 3-subsets is
\[f_5(x) = 2 \sum_{i=1}^{s-2} (s - i - 1)x^{s-i+1} = 2 \sum_{j=2}^{s} (j - 1)x^{j+1}. \]

(6) If \(S = \{v_x, v'_i, v'_j\}, \ 1 \leq i < j \leq s - 1, \) then
\[d(S) = s - i. \]

The corresponding polynomial is
Similarly, if $S = \{v'_i, v_i, v_j\}$, $1 \leq i < j \leq s - 1$, then $d(S) = s - i + 1$.

The corresponding polynomial for such S is

$$
\sum_{i=1}^{s-2} (s - i - 1)x^{s-i}.
$$

Thus, the distance polynomial for all these 3-subsets S in this case is

$$
f_6(x) = \sum_{i=1}^{s-2} (s - i - 1)x^{s-i} + \sum_{i=1}^{s-2} (s - i - 1)x^{s-i+1}
$$

$$
= \sum_{j=2}^{s-1} (j - 1)(x + 1)x^j
$$

These are all possibilities of S. Therefore

$$
F_s(x) = \sum_{r=1}^{6} f_r(x)
$$

$$
= 2x^2 + 2x^s + 2\sum_{j=2}^{s-1} x^j + 2\sum_{j=2}^{s-1} (j - 1)x^j + 2\sum_{j=2}^{s-1} x^{j+1}
$$

$$
+ 2\sum_{j=2}^{s-1} (j - 1)(x + 1)x^j + 2\sum_{j=2}^{s-1} (j - 1)x^{j+1}.
$$

Simplifying the above summations we get the reduction formula given in the theorem.

The Wiener index of the Steiner 3-distance of P_t^2 for even t is given in the next corollary.

Corollary 3.4. For $t = 2s \geq 4$,

$$
W^*_3(P_t^2) = W^*_3(P^{2}_{t-2}) + \frac{4}{3} s(s - 1)(2s - 1).
$$

We now consider the square of a path P_t of odd order $t = 2s + 1$.

The next theorem gives us a reduction formula of $H^*_3(P_t^2; x)$.

Theorem 3.5. For $t = 2s \geq 7$, we have

$$
H^*_3(P_t^2; x) = H^*_3(P_{t-1}^2; x) + F_s(x),
$$

where

$$
F_s(x) = x^2 + \sum_{j=1}^{s-1} [(x + 3)j + x]x^{j+1}.
$$

Proof: The graph P_t^2 is shown in Fig. 3.3 where the vertices are labeled as that of Fig. 3.2.
Fig. 3.3. \(P_t^2, \) odd \(t \)

\(P_{t-1}^2 \) is obtained from \(P_t^2 \) by removing vertex \(v_{s+1} \). Thus

\[H_3^*(P_t^2; x) = H_3^*(P_{t-1}^2; x) + F_s(x), \]

where

\[F_s(x) = \sum_S x^{d(S)}, \]

in which the summation is taken over all 3-subsets \(S \)

\[S = \{v_{s+1}, u_i, u_j\} \text{ for all } u_i, u_j \in V(P_{t-1}^2). \]

We consider the following 5 cases.

1. If \(S = \{v_{s+1}, v_i, v_j\}, 1 \leq i < j \leq s \), then

\[d(S) = s + 1 - i. \]

The number of values of \(j \) is \((s-i)\) for each values of \(i \). Thus, the polynomial corresponding to such 3-subsets \(S \) of this case is

\[f_1(x) = \sum_{i=1}^{s-1} (s-i)x^{s+1-i} = \sum_{j=1}^{s-1} jx^{j+1}. \]

2. If \(S = \{v_{s+1}, v_i, v'_i\}, 1 \leq i \leq s \), then

\[d(S) = s + 2 - i. \]

Therefore the corresponding polynomial is

\[f_2(x) = \sum_{i=1}^{s} x^{s+2-i} = x^2 + x^{s-1} \sum_{j=1}^{s} x^j. \]

3. If \(S = \{v_{s+1}, v'_i, v'_j\}, 1 \leq i < j \leq s \), then

\[d(S) = s - i + 1, \]

and for each value of \(i \) there are \((s-i)\) values for \(j \). Thus, the corresponding polynomial for such case of \(S \) is

\[f_3(x) = \sum_{i=1}^{s-1} (s-i)x^{s-i+1} = \sum_{j=1}^{s-1} jx^{j+1}. \]

4. If \(S = \{v_{s+1}, v_i, v'_j\}, 1 \leq i < j \leq s \), then

\[d(S) = s + 2 - i, \]

and for each value of \(i \) there are \((s-i)\) values for \(j \). Thus, the polynomial corresponding to all 3-subsets \(S \) of this case is
\[f_4(x) = \sum_{i=1}^{s-1} (s-i)x^{s+2-i} = x^2 \sum_{j=1}^{s-1} jx^j. \]

(5) Finally, If \(S = \{ v_{s+1}, v_i', v_j \} \), \(1 \leq i < j \leq s \), then \(d(S) = s + 1 - i \), and there are \((s-i)\) values for \(j \) for each value of \(i \). Therefore, the corresponding polynomial is
\[f_s(x) = \sum_{i=1}^{s-1} (s-i)x^{s+1-i} = \sum_{j=1}^{s-1} jx^{j+1}. \]

Thus,
\[F_s(x) = \sum_{r=1}^{5} f_r(x) = \sum_{j=1}^{s-1} (jx + x^2 + jx + x^2j + jx)x^j + x^2 \]
\[= x^2 + \sum_{j=1}^{s-1} [(x + 3)j + x]x^{j+1}. \]

The next corollary gives us the Wiener index of the Steiner 3-distance of \(P_t^2 \) for odd \(t \).

Corollary 3.6. For odd \(t = 2s + 1 \), \(s \geq 2 \), the Wiener index of \(P_t^2 \) is
\[W_3^*(P_t^2) = W_3^*(P_{t-1}^2) + \frac{1}{3}(s-1)(4s^2 + 7s + 6) + 2. \]

References