حول الدوال المستمرة من النوع-\(i \)

م.م. صبيح وديع اسكندر
قسم الرياضيات/كلية التربية للعلوم الصرفة/جامعة الموصل
الموصل/العراق
sabeehqaqus@yahoo.com

تاريخ الاستلام: 25/02/2018
تاريخ القبول: 07/06/2018

الخلاصة
في هذا البحث نبرهن بأن الدالة \(f : (X, \tau) \rightarrow (Y, \delta) \)
مستمرة من النوع-\(i \) إذا كانت شاملة، متباينة
مستمرة من النوع-\(i \) إلى الفضاء التبولوجي \((X, \tau) \) من النوع-\(i \)
إضافة إلى ذلك سوف نعرف ونجد العلاقة بين بعض بديهيات الانفصال من النوع-\(i \) مثل \(T_{2i} \) و

الكلمات المفتاحية: الدالة المستمرة من النوع-\(i \)، التراص من النوع-\(i \)، الدالة المفتوحة من النوع-\(i \)
On i-Continuous Functions

Sabih W. Askandar
Department of Mathematics \ College of Education For Pure Science
University of Mosul
Mosul-Iraq
sabeehqaqus@yahoo.com

Received 25/02/2018 Accepted 07/06/2018

ABSTRACT

In this paper we prove that the function \(f : (X, \tau) \rightarrow (Y, \delta) \) is i-open if it is injective, surjective and i-continuous from i-compact topological space \((X, \tau) \) into \(T_2 \)-space \((Y, \delta) \). Further, we define and find the relationship among some i-separation axioms such as \(T_{2i}, T_{1i} \) and \(T_{si} \).

Keywords: i-continuous function, i-compactness, i-open function.

INTRODUCTION:

It is well known that a continuous function on topological spaces needs not to be open. In [7] was proved that a continuous function which is injective and surjective from compact topological space \((X, \tau) \) into \(T_2 \)-space \((Y, \delta) \). Further, we define and find the relationship among some i-separation axioms such as \(T_{2i}, T_{1i} \) and \(T_{si} \).

Throughout this work \((\tau, X) \) always are topological spaces (where \(\tau \) is a family of all i-open sets [1] of \(X \)). This work consists of two sections. In the first one we begin by many useful concepts. In the second section we introduce the concept of i-compactness and use it to prove the main result and we have proved some important theorems to discuss the property of i-continuous functions (see Theorem 2.2, Theorem 2.3, Theorem 2.4, Theorem 2.5, Theorem 2.9, Theorem 2.10 and Theorem 2.11) and we find the relationship among some i-separation axioms (see Theorem 2.7).
1. Definitions and Examples.

We begin in this section by the following useful concepts.

Definition 1.1. A subset A of a topological space (X, τ) is said to be i-open set[1] if there exists an open set $G \neq \phi$, X such that $A \subseteq Cl(A \cap G).$ The complement of an i-open set is called i-closed set. (Where $Cl(A \cap G)$ denotes the closure of $(A \cap G)$).

Example 1.2. Let $X=\{a, b, c, d\}, \tau=\{\phi, \{a\}, \{c, d\}, \{a, c, d\}, X\}$. Open sets are: $\phi, \{a\}, \{c, d\}, \{a, c, d\}, X$ such that if and only if for each $\delta \ni \phi$ containing ϕ, i.e., $\{a\}, \{c, d\}$. Take $A=\{a, b\}, G=\{a\}, A \cap G=\{a\}, Cl(A \cap G)=\{a, b\}$. So $A \subseteq Cl(A \cap G)$. Then A is i-open set but it is not open. $A^C=\{c, d\}$ is i-closed set.

Definition 1.3. Let (X, τ') be a topological space and let A be a subset of X, the intersection of all i-closed sets containing A is called i-Closure of $A[1]$, denoted by $Cl_i(A)$: $Cl_i(A)=\bigcap_{i \ni A} F_i, A \subseteq F_i, \forall i$. Where F_i is i-closed set $\forall i$ in a topological space (X, τ_i). $Cl_i(A)$ is the smallest i-closed set containing A, $A=Cl_i(A)$ if and only if A is i-closed set.

Definition 1.4. A function $f: (X, \tau) \rightarrow (Y, \delta)$ is said to be i-continuous[1] at the point $x_0 \in X$ if and only if for each i-open set $I \ni \delta$ containing $f(x_0)$ there exists an i-open set I in (X, τ) containing x_0 such that $f(I) \subseteq I$. f is i-continuous map if it is i-continuous at all points of X.

Lemma 1.5. [1] Let $f: (X, \tau) \rightarrow (Y, \delta)$ then the following conditions are each equivalent to i-continuity of f on X:

i) The inverse of every i-open set in Y is i-open in X.

ii) The inverse of every i-closed set in Y is i-closed in X.

Definition 1.6. A function $f: (X, \tau) \rightarrow (Y, \delta)$ is called i-open [1] if the image $f(O)$ of each i-open set O in (X, τ) is i-open set in (Y, δ).

Definition 1.7. A topological space (X, τ) is said to be T_{ii} space, if given any pair of distinct points x, y of X, there exists an i-open set I, containing one of them but not the other (i-Klomogorov axiom).

Example 1.8. Let $X=\{a, b\}, \tau=\{\phi, \{a\}, X\}, \tau'=\{\phi, \{a\}, X\}$ are (X, τ') and (X, τ) topological spaces. Therefore: $a \in \{a\}, b \notin \{a\}$ s.t. $a, b \in X (a \neq b) \exists \{a\} \in \tau'$.

Definition 1.9. A topological space (X, τ) is said to be T_{iii} space if for any two distinct points x, y of X, there are an i-open set U containing x but not y and i-open set V containing y but not x (i-Frechet axiom).
On i-Continuous Functions

Example 1.10. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}$, $\{b, c\}, X \} = \tau'$, (X, τ') is a topological space.

Let $a, b \in X (a \neq b) \exists\{a\}, \{b\} \in \tau'$

$s.t. \ a \in \{a\}, b \in \{b\}, a \notin \{b\}$

$a, c \in X (a \neq c) \exists\{a\}, \{c\} \in \tau'$

$s.t. \ a \in \{a\}, c \notin \{a\}, c \in \{c\}, a \notin \{c\}$

$b, c \in X (b \neq c) \exists\{b\}, \{c\} \in \tau'$

$s.t. \ b \in \{b\}, c \notin \{b\}, c \in \{c\}, b \notin \{c\}$

Therefore; (X, τ') is T_i^{-} space.

Definition 1.11. A topological space (X, τ) is said to be T_{2i} -space if for any two distinct points x, y of X, there exists two separated i-open sets I_1 and I_2 such that I_1 containing x and I_2 containing y (i-Hausdorff axiom).

Example 1.12. Let $X = \{a, b\}$, $\tau = \{\emptyset, \{a\}, \{b\}, X \}$, $\tau' = \tau$

(X, τ') and are topological spaces. (X, τ')

$a, b \in X (a \neq b) \exists\{a\}, \{b\} \in \tau'$

$s.t. \ a \in \{a\}, b \in \{b\}, (a \cap \{b\}) = \emptyset$

Therefore; (X, τ') is T_{2i}.

2. i-Compactness and the Main Result.

In this section we introduce the concept of i-compactness and use it to prove the main result also we find the relationship among T_{2i}, T_{i1} and T_{i1} -space.

Definition 2.1. A subset A of a topological space (X, τ) is said to be i-compact if every cover of A by i-open sets has a finite sub cover, we call the topological space (X, τ) i-compact provided the set X is i-compact.

Theorem 2.2. Every i-closed subset of i-compact space is i-compact.

Proof: Let A be i-closed subset of i-compact space (X, τ) and let $\{G_k\}$ be a cover of A by i-open sets.

Now $\{G_k \cup A^c\}$ is a cover of X by i-open sets, hence there exists a finite sub cover of X. i.e. $X \subseteq \{\cup_{k=1}^{n} G_k \cup A^c\}$ implies to $A \subseteq (\cup_{k=1}^{n} G_k \cup A^c)$. Therefore, A is i-compact.

Theorem 2.3. If f is i-continuous function of (X, τ) into (X', τ') then f maps every i-compact subset of X onto an i-compact subset of X'.

Proof: Let A be i-compact subset of X and let $\{G_k\}$ be a cover of $f(A)$ by i-open sets.

Since $A \subseteq f^{-1}(f(A)) \subseteq f^{-1}\left(\cup_k G_k^*\right) \subseteq \cup_k f^{-1}(G_k^*)$, the family $f^{-1}(G_k^*)$ is a cover of A by i-open sets by (Theorem 1.5). Since A is i-compact, there must be some finite sub cover of A.
say $A \subseteq (\bigcup_{k=1}^{n} f^{-1}(G_k^*))$.

Now, $f(A) \subseteq f(\bigcup_{k=1}^{n} f^{-1}(G_k^*)) = \bigcup_{k=1}^{n} f(f^{-1}(G_k^*)) \subseteq \bigcup_{k=1}^{n} G_k^*$. Therefore, A is i-compact.

Theorem 2.4. Every i-compact subset A of $T_{2,i}$-space X is i-closed.

Proof: Let x be a fixed point in A^C. Since the space X is $T_{2,i}$, therefore; for each point $y \in A$, there exist two disjoint i-open sets G_x and G_y such that $x \in G_x$ and $y \in G_y$. The family of sets $\{G_y : y \in A\}$ is a cover of A by i-open sets. Since A is an i-compact, there must be some finite sub covering $\{G_{y_i} : i \in I\}$. Let $\{G_{y_i} : i \in I\}$ be the corresponding i-open sets containing x and let $G = \bigcap_{i=1}^{n} G_y$. Then G is i-open set containing x, we see that $G = \bigcap_{i=1}^{n} G_y \subseteq \bigcap_{i=1}^{n} G_y = \bigcap_{i=1}^{n} G_y \subseteq A^C$. Hence each point in A^C is contained in i-open set which is itself contained in A^C. Therefore; A^C is i-open set, so A must be i-closed set.

Theorem 2.5. Let f be injective, surjective and i-continuous function from i-compact topological space (X,τ) into $T_{2,i}$-space (X^*,τ^*) then f is i-open.

Proof: Let A be i-open set in X, so that A^C is i-closed. By (theorem 2.2), A^C is i-compact. By (theorem 2.3), $f(A^C)$ is i-compact. By (theorem 2.4), $f(A^C)$ is i-closed. Since f is injective and surjective, $f(A^C) = (f(A))^C$. So, as a consequence $f(A)$ is i-open set. Hence f is i-open.

Example 2.6. Let $X = \{1,2\}$, $T = \{\emptyset,\{1\},\{2\},X\}$, $Y = \{1,2\}$, $\delta = \{\emptyset,\{1\},\{2\},Y\}$, $f: (X,\tau) \rightarrow (Y,\delta), f(1)=1, f(2)=2, f(3)=3$. It is clear that (X,τ) is i-compact space because $1,2 \in X$ and $1 \in \{1\}, 2 \in \{2\}$ i.e. $X \subseteq \{1\} \cup \{2\}$, where $\{1\}$ and $\{2\}$ are i-open sets.

So $\{1\} \cup \{2\}$ is a finite i-open cover of X.

Also (Y,δ) is $T_{2,i}$-space because $1,2 \in X$, $1 \neq 2$ there exist two i-open sets $\{1\}$ and $\{2\}$, $\{1\} \cap \{2\} = \emptyset$ such that $1 \in \{1\}, 2 \in \{2\}$.

f is i-continuous function (Theorem 3.3). f is i-open mapping (Definition 3.1).

Theorem 2.7. Every $T_{2,i}$-space is T_{ii} and also is T_{ii}.

Proof: 1. Let (X,τ) be a T_{ii}-space. Let a and b be two distinct points of (X,τ). Since (X,τ) is T_{ii}-space, there exist two i-open sets G and H such that $a \in G$, $b \notin G$ and $a \notin H, b \in H$. Hence we have $a \in G$, $b \notin G$. Therefore (X,τ) is T_{ii}-space.

2. Let (X,τ) be a $T_{2,i}$-space. Let x and y be two distinct points in X. Since (X,τ) is $T_{2,i}$-space, there exist two disjoint i-open sets U and V such that $x \in U$, $y \in V$. This implies, $x \in U$, $y \notin U$, $x \notin V$, $y \in V$. Hence (X,τ) is T_{ii}-space.

3. From 1 and 2 we have, every $T_{2,i}$-space is T_{ii}. ■
On i-Continuous Functions

The converse of Theorem 2.7 is not necessary to be true. Indeed,

Example 2.8. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, \{a\}, X\}$, $\tau' = \{\emptyset, \{a, b\}, \{a, c\}, X\}$. (X, τ') is a topological space.

$a, b \in X \ (a \neq b) \ \exists \{a\} \in \tau'$ s.t. $a \in \{a\}, b \notin \{a\}$.

$a, c \in X \ (a \neq c) \ \exists \{a\} \in \tau'$ s.t. $a \in \{a\}, c \notin \{a\}$.

$b, c \in X \ (b \neq c) \ \exists \{a, b\} \in \tau'$ s.t. $b \in \{a, b\}, c \notin \{a, b\}$. Therefore; (X, τ) is T_{i1}. (X, τ) is not T_{i2}-space, because, open \emptyset, there is no exist two $i\ a, b \in X \ (a \neq b)$ sets G and H s.t. $a \in G, b \in H$. Also, (X, τ) is not T_{i2}-space (definition 1.11).

Theorem 2.9. Let $f : (X, \tau) \to (Y, \delta)$ be bijective i-open and i-continuous map from a T_{i1}-space (X, τ) onto a topological space (Y, δ). Then (Y, δ) is T_{i1}-space.

Proof: Let a and b be two distinct points of (Y, δ). Since f is bijective, there exist two distinct points c and d of (X, τ) such that $f(c) = a$ and $f(d) = b$. As (X, τ) is T_{i1}-space, there exists i-open set G such that $c \in G$ and $d \notin G$. Since f is i-open map, then $f(G)$ is i-open in (Y, δ). As f is i-continuous map we have $a \notin f(G), \ b \notin f(G)$. Hence (Y, δ) is T_{i1}-space.

Theorem 2.10. If $f : (X, \tau) \to (Y, \delta)$ is a bijective i-open and i-continuous map from a T_{i1}-space (X, τ) onto a topological space (Y, δ). Then (Y, δ) is T_{i1}-space.

Proof: Let (X, τ) be a T_{i1}-space. Let a and b be two distinct points of (Y, δ). Since f is bijective, there exist two distinct points c and d of (X, τ) such that $f(c) = a$ and $f(d) = b$. Since (X, τ) is T_{i1}-space, there exists i-open sets G and H such that $c \in G, d \notin G$ and $c \notin H, d \in H$. Since f is i-open and i-continuous map, then $f(G)$ and $f(H)$ are i-open in (Y, δ) such that $a = f(c) \in f(G), b = f(d) \notin f(G)$ and $a = f(c) \notin f(H), b = f(d) \in f(H)$. Hence (Y, δ) is T_{i1}-space.

Theorem 2.11. Let $f : (X, \tau) \to (Y, \delta)$ be a bijective i-open and i-continuous map. If (X, τ) is T_{i2}-space then (Y, δ) is also T_{i2}-space.

Proof: Let (X, τ) be T_{i2}-space. Let y_1 and y_2 be two distinct points of Y. Since f is bijective map, there exist two distinct points x_1 and x_2 of X such that $f(x_1) = y_1$ and $f(x_2) = y_2$. Since (X, τ) is T_{i2}-space, there exist i-open sets G and H such that $x_1 \in G, x_2 \in H$ and $G \cap H = \emptyset$. Since f is i-open and i-continuous map, then $f(G)$ and $f(H)$ are i-open in (Y, δ) such that $y_1 = f(x_1) \in f(G), y_2 = f(x_2) \in f(H)$ and $f(G) \cap f(H) = \emptyset$. Therefore, $f(G) \cap f(H) = f(G \cap H) = \emptyset$. Hence (Y, δ) is T_{i2}-space.

Acknowledgements: Mosul University.
References

(In Arabic)

