حول الحلقات الغامرة من النمط SSAGP

رائدة داؤد محمود
قسم الرياضيات
كلية علوم الحاسوب والرياضيات
جامعة الموصل
raida.1961@yahoo.com

مناطق أدريس عبد
قسم الرياضيات
كلية علوم الحاسوب والرياضيات
جامعة الموصل
manaledress@uomensul.edu.iq

10.33899/edusj.1970.163322

الخلاص

في هذا البحث نحن نختبر بعض خواص الحلقات التي يكون فيها كل مقاس بسيط متفرد ايمن من النمط SSAGP (اختصاراً تكتب غامرة من النمط AGP-AGP) برهنا ان Y(R)=0 عندما Y(R)=0.

1. للك R حلقة متاممة مقيدة وغامرة من النمط SSAGP يتمى وكل مثالي أعظمي ايمن أساسي من R حلقة متاممة متاحة قوة.

2. للك R حلقة غامرة من النمط SSAGP وكل عنصر متاحيد Gw متالي من النمط r(e) و لكل عنصر تجايد Z(R)=0.

3. للك R حلقة غامرة من النمط SSAGP و CM و MERT، SSAGP يتمى كل CM و MERT بسيطة ارتيبية.

الكلمات المفتاحية: منتظمة، متاممة، غامرة من النمط-P، غامرة من النمط-AGP.
On SSAGP-injective Rings

Raida D. Mahmood
Department of Mathematics
College of Computer Sciences and Mathematics
University of Mosul
raida.1961@yahoo.com

Manal I. Abd
Department of Mathematics
College of Computer Sciences and Mathematics
University of Mosul
manaledress@uomosul.edu.iq

DOI: 10.33899/edusj.1970.163322

Received
11/04/2018

Accepted
07/06/2018

ABSTRACT

In this paper, we investigate some properties of rings whose simple singular right R-modules are AGP-injective (or SSAGP-injective for short). It is proved that: Y(R)=0 where R is a right SSAGP-injective rings. It is also proved that:

1. Let R be a complement right bounded, SSAGP – injective rings and every maximal essential right ideal is Gw-ideal. Then R is strongly regular ring.

2. Let R be SSAGP – injective and r(e) is Gw-ideal for every idempotent element e ∈ R. Then Z(R)=0.

3. Let R be SSAGP – injective, MERT and right CM. Then R is either strongly regular or semi simple Artinian.

Keyword: regular, reduced, P-injective, AGP-injective.

1- Introduction:

Throughout this paper, R denotes as associative ring with identity and all modules are unital. The symbols J(R) and Y(R) (Z(R)) respectively for the Jacobson radical and right (left) singular ideal of R. As usual, R is a reduced ring, if N(R)=0 (N(R) the set of all nilpotent elements of (R). R is a right ERT (resp., MERT) ring if every essential (resp. maximal essential) right ideal of R is an ideal [1]. A ring R is abelian if every idempotent of R is central. R is regular if for every a ∈ R, there exists b ∈ R such that a = aba . R is strongly regular if for every a ∈ R, there exists b ∈ R such that a=a^2b. It is known that a ring R is strongly regular if and only if R is a reduced regular ring [2]. Following [3]. The ring R is a right weakly regular (resp., left weakly regular) if for every a ∈ R, a = ac (a = ca) for some c ∈ RaR and R is weakly regular, if it is both left and right weakly regular. A regular ring is clearly weakly regular, but a weakly regular ring needs not to be regular (for example) [3].

It is known that all generalizations of injectivity have been discussed in many papers [4, 6, 5]. R is called a p-injective ring [2], if every right R-homomorphism from aR to R can be extended to endomorphism of R, where a ∈ R . In [1], p-injective rings were extended to Ap-injective rings and AGP-injective rings. A ring R is called Gp-injective, if for every a ∈ R there exists n ∈ Z^+such that a^n ≠ 0 and \(lr(a^n) = Ra^n \) [7].

252
R is called right AP-injective [1], if for any $a \in R$, there exists a left ideal X_a of R such that $\ell r(a) = Ra \oplus X_a$. A ring R is called right AGP-injective, if for any $0 \neq a \in R$, there exists a positive integer n and a left ideal X_a of R such that $a^n \neq 0$ and $\ell r(a^n) = Ra^n \oplus X_a$ [6].

Clearly, AP-injectivity and AGP-injectivity are the generalization of P-injectivity, and they have many properties [4] [6] [5].

2- Right AGP-injective Rings:

The following lemma which is due to Zhao Yu-e [5], plays a central role is several of our proofs.

Lemma 2-1:
Suppose M is a right R-module with $S=\text{End}(M_R)$. If $\ell M_{R}(a) = Ma \oplus X_a$, where X_a is a left S-submodule of M_R. Set $f : aR \rightarrow M$ is a right R-homomorphism, then $f(a) = ma + x$ with $m \in M$, $x \in X_a$.

Lemma 2-2: [6]
If R is a right AGP-injective ring, then $J(R) = Y(R)$.
The following result extends Lemma (2.2).

Proposition 2-3:
If R is a semiprime, ERT is a right AGP-injective ring, then $Y(R) = J(R) = 0$.

Proof: If $Y(R) \neq 0$, there exists $0 \neq y \in Y(R)$ such that $y^2 = 0$. Since $r(y)$ is an ideal of R (R is ERT), $yR \subseteq r(y)$ implies that $RyR \subseteq r(y)$, $yRy = 0$, whence $(yR)^2 = 0$. Since R is a semiprime, we have $y = 0$. This contradicts that $Y(R) = 0$. Thus $Y(R) = J(R) = 0$.

A ring R is called right CM ring [8], iff, for any maximal essential right ideal of R, every complement right subideal is an ideal of R.

Lemma 2-4: [8]
If R is a right CM ring and a right nonsingular, then R is either a semi simple Artinian or a reduced.

Lemma 2-5: [4]
If R is a reduced right AGP-injective, then R is strongly regular.
Now, we give the following proposition

Proposition 2-6:
If R is a semi prime, ERT is a right AGP-injective and CM ring, then R is either strongly regular or semi – simple Artinian.

Proof: By proposition (2.3) and Lemma (2.4), R is either a semi simple Artinian or it is reduced. If R is reduced, then R is strongly regular Lemma (2.5).

3- The Regularity of SSAGP-injective rings:
In SSAGP-injective Rings

Definition 3-1:
A ring R is called SSAGP-injective ring, if every simple singular right R-module is AGP-injective.

Following [9], a right ideal L of a ring R is a generalized weak ideal (Gw-ideal) if for all $a \in L$, there exists a positive integer n such that $Ra^n \subseteq L$.

Proposition 3-2:
Let R be a right SSAGP-injective and every maximal essential right ideal of R is Gw-ideal. Then $Y(R) = 0$.

Proof: Suppose that $Y(R) \neq 0$. Then there exists $0 \neq a \in Y(R)$ such that $a^2 = 0$. Hence $r(a)$ is contained in a maximal essential right ideal of R. Thus R/M is AGP-injective, then $\ell_{R/M}r(a) = (R/M)a + Xa$, $Xa \subseteq R/M$. Let $f : aR \rightarrow R/M$, be defined by $f(ra) = r + M$, for every $r \in R$. Since $r(a) \subseteq M$ is will define By Lemma (2-1), $1 + M = f(a) = ca + M$, $c \in R$, $x \in Xa$, $1 - ca + M = x \in R/M \cap Xa$, so $1 - ca \in M$. By hypothesis M is Gw-ideal, and $ac \in M$. So there exists $n \in Z^+$, such that $c(ac)^n \in M$. Since M is a right ideal, $(c - c)ac \in M$, $(c(ac)^n)^{-1} = (c - c)(ac)^{-1}c(ac)^n \in M$, continuing in the process, we have $c(ac) \in M$, thus $c = (c - c)ac + ca \in M$, so $ca \in M$, $1 \in M$, which is a contradiction. Thus $a = 0$ and so $Y(R) = 0$.

Following [8], a ring R is called a complement right (left) bounded if every non zero complement right (left) ideal of R contains a non zero ideal of R.

Lemma 3-3: [9]
Let R be a complement right (left) bounded and a right (left) non singular ring. Then R is reduced.

Theorem 3-4:
Let R a complement right bounded ring and every maximal essential right ideal is Gw-ideal. Then R is strongly regular, if R is a SSAGP-injective ring.

Proof: Let $a \in R$. If $r(a) + aR$ is not essential, then there exists a non zero a complement right ideal L of R such that $(r(a) + aR) \cap L = 0$. Since R is a complement right bounded, there exists a non zero ideal I of R and $I \subseteq L$. Let $0 \neq x \in I$, then $ax \in I \cap aR = 0$. This implies that $x \in r(a) \cap I = 0$. This is a contradiction to $x \neq 0$. Therefore $r(a) + aR$ is an essential right ideal of R. If $r(a) + aR \neq R$, then there exists a maximal right ideal M of R such that $r(a) + aR \subseteq M$. Since $r(a) + aR$ is essential, M is essential. Then R/M is a simple singular right R-module, hence by hypothesis, it is AGP-injective. There exists a positive integer n such that $a^n \neq 0$ and $\ell_{R/M}r(a^n) = (R/M)a^n + X^n_n$. Let $f : a^n R \rightarrow R/M$ be defined by $f(a^n r) = r + M$. By Proposition (3.2) and Lemma (3.3) we get R which is reduced, f is well defined R-homomorphism. Thus by Lemma (2.1), $f(a^n) = ca^n + M + y$, $c \in R$, $y \in X$, and $f(a^n) = 1 + M$, and so $1 - ca^n + M = y \in R/M \cap X = 0$, $1 - ca^n \in M$. Suppose $ca^n \notin M$, then $M + ca^n R = R$.
implying $x + ca^n r = 1$ for some $x \in M$, $r \in R$. Now, M is a Gw-ideal and $a^n rc \in M$, so there exists $k \in Z^+$ such that $(a'^{\prime} rc)^k \in M$. Then $(1 - x)^{k+1} = (ca^n r)^{k+1} = c(a'^{\prime} rc)^ka^n r \in M$. So that $1 \in M$ which is a contradiction. Hence $r(a) + aR = R$. So $z + ab = 1$ for some $z \in r(a)$ and $b \in R$, which yields $a = a^2b$. This proves that R is strongly regular.

Lemma 3-5: [9]

The following conditions are equivalent to the ring R.

1. R is a belian.
2. $\ell(e)$ is Gw-ideal of R for every $e^2 = e \in R$.
3. $\ell(e)$ is Gw-ideal of R for every $e^2 = e \in R$.

Theorem 3-6:

Let R be a right SSAGP-injective and $r(e)$ is a Gw-ideal of R for every idempotent element e of R. Then $Z(R) = 0$.

Proof: If $Z(R) \neq 0$, then there exists $0 \neq a \in Z(R)$ such that $a^2 = 0$. Suppose that $r(a) + RaR \neq R$ and M be a maximal right ideal of R such that $r(a) + RaR \subseteq M$. If M is not essential, then $M = r(e)$ for some $e^2 = e \in R$. Since $a \in M = r(e)$ then $ae = 0$. Lemma (3.5). Hence $e \in r(a) \subseteq M = r(e)$ and $e = e^2 = 0$, contradict $e \neq 0$. Thus M is essential. Since every simple singular right R-module is AGP-injective, then R/M is AGP-injective and $\ell r(a) = (R/M)a \oplus Xa$. Let $f : aR \rightarrow R/M$ be defined by $f(ab) = b + M$, $b \in R$, by Lemma (2.1), $1 + M = f(a) = ca + M + x$, $1 - ca + M = x \in (R/M) \cap X = 0$, thus $1 - ca \in M$, since $ca \in RaR \subseteq M$, $1 \in M$, which is a contradiction. Hence $RaR + r(a) = R$. This implies that $x + \sum y_i az_i = 1$ for some $x \in r(a)$, $y_i, z_i \in R$. This yields $(1 - \sum y_i az_i) = x \in r(a)$ and $a(1 - \sum y_i az_i) = 0$ that is $a \in \ell (1 - \sum y_i az_i)$. Now, $a \in Z(R)$, hence $\ell (\sum y_i az_i)$ is an essential left of R. Therefore $\ell (1 - \sum y_i az_i) \cap \ell (y_i az_i) = 0$ that is $\ell (1 - \sum y_i az_i) = 0$, whence $a = 0$. This is a contradiction to $a \neq 0$. Thus $Z(R) = 0$.

Theorem 3-7:

Let R be a right SSAGP-injective and $r(e)$ is a Gw-ideal of R for every idempotent element $e \in R$. Then R is a right weakly regular ring.

Proof: We need only to prove $RaR + r(a) = R$ for every $a \in R$. If not, then there exists a maximal right ideal M of R containing $RaR + r(a)$. If M is not an essential, then $M = r(e)$ for any $e^2 = e \in R$. Proceeding as in the proof of Theorem (3.6), we get a contradiction. Thus M is an essential. So R/M is a simple singular right R-module. Since R/M is AGP-injective there exists a positive integer n such that $a^n \neq 0$ and $\ell_{R/M}(a^n) = (R/M)a^n \oplus Xa^n$, $Xa^n \leq R/M$. Let $f : a^n R \rightarrow R/M$ be defined by $f(a^n r) = r + M$, since $r(a) \subseteq M$, f is well defined R-homomorphism. So $f(a^n) = 1 + M$, thus $1 - ca^n + M = x \in (R/M) \cap X = 0$. So $1 - ca^n = 0$ and so $1 \in M$, which are
Lemma 3-8: [10]

Let R be a ring such that r(a) is a Gw-ideal for all \(a \in R \), then R is a right weakly regular if and only if R is a left weakly regular.

From Theorem (3.7) and Lemma (3.8) we get:

Corollary 3-9:

Let R be a right SSAGP-injective and r(a) is a Gw-ideal of R for every \(a \in R \). Then R is a weakly regular ring.

Theorem 3-10:

Let R be a right CM, MERT, and SSAGP-injective. Then R is either strongly regular or a semi simple Artinian.

Proof: Depending on proposition (3.2) and Lemma (2.4), R is either a semi simple Artinian or a reduced. If R is not a semi simple Artinian, then R is reduced. For any \(0 \neq a \in R \), we will show that \(aR + r(a) = R \). Suppose not, then there exists a maximal right ideal M of R containing \(aR + r(a) \). If M is not an essential, then it is a direct summand of R. Thus \(M = r(e) \) for some \(e^2 = e \in R \). Note that \(a \in r(e) \). It follows \(ea = ae = 0 \). This implies that \(e \in r(e) \subseteq M = r(e) \) and \(e = e^2 = 0 \), which are contradiction. Since R/M is AGP-injective, there exists a positive integer n such that \(R/M \) is AGP-injective, and there exists a maximal right ideal M of R containing \(aR + r(a) \). If M is not an essential, then it is a direct summand, so \(M = r(e) \). Proceeding as the proof of Theorem (3.7) we get, \(1 - ca^n \in M \), \(c \in R \). Since R is MERT and \(ca^n \in M \). Thus \(1 \in M \), which is a contradiction. Hence R is a strongly regular.

A ring R is said to be a biregular ring if, for any \(a \in R \), \(RaR \) generated by a central idempotent [11].

Lemma 3-11: [11]

A ring R is a biregular if and only if \(R = RaR \oplus r(a) \) for all \(a \in R \).

Theorem 3-12:

Let R be a right CM-ring, SSAGP-injective and every maximal essential right ideal of R is a Gw-ideal. Then R is a biregular ring.

Proof: By Proposition (3.2), Y(R) = 0. Since R is a right non singular, right CM, by Lemma (2.4), R is either a semi simple Artinian or a reduced. We consider this case when R is a reduced ring. For any, set \(E = RaR \oplus r(a) \). Since R is a reduced of \(RaR \cap r(a) = 0 \). Suppose that \(E \neq R \), then there exists a maximal right ideal M of R such that \(RaR + r(a) \subseteq M \). We shall prove that M is an essential if not, then M must be a direct summand, so \(M = r(e) \). Proceeding as the proof of Theorem (3.6), we get a contradiction. Therefore M must be an essential thus \(R/M \) is AGP-injective, as in Theorem (3.7), we get a contradiction. Therefore \(R = E = RaR \oplus r(a) \). So R is a biregular ring Lemma (3.11).
References